There are many well-defined static optimisation tasks that are independent of the database

\[\rightarrow \text{query equivalence, containment, emptiness} \]

Unfortunately, all of them are undecidable for FO queries

\[\rightarrow \text{Slogan: “all interesting questions about FO queries are undecidable”} \]

\[\rightarrow \text{Let’s look at simpler query languages} \]
Optimisation is simpler for conjunctive queries

Example 10.1: Conjunctive query containment:

\[
Q_1 : \quad \exists x, y, z. \ R(x, y) \land R(y, y) \land R(y, z)
\]
\[
Q_2 : \quad \exists u, v, w, t. \ R(u, v) \land R(v, w) \land R(w, t)
\]

- \(Q_1\) find \(R\)-paths of length two with a loop in the middle
- \(Q_2\) find \(R\)-paths of length three

\(\sim\) in a loop one can find paths of any length
\(\sim Q_1 \sqsubseteq Q_2\)
Consider conjunctive queries $Q_1[x_1, \ldots, x_n]$ and $Q_2[y_1, \ldots, y_n]$.

Definition 10.2: A query homomorphism from Q_2 to Q_1 is a mapping μ from terms (constants or variables) in Q_2 to terms in Q_1 such that:

- μ does not change constants, i.e., $\mu(c) = c$ for every constant c
- $x_i = \mu(y_i)$ for each $i = 1, \ldots, n$
- if Q_2 has a query atom $R(t_1, \ldots, t_m)$
 then Q_1 has a query atom $R(\mu(t_1), \ldots, \mu(t_m))$
Deciding Conjunctive Query Containment

Consider conjunctive queries $Q_1[x_1, \ldots, x_n]$ and $Q_2[y_1, \ldots, y_n]$.

Definition 10.2: A query homomorphism from Q_2 to Q_1 is a mapping μ from terms (constants or variables) in Q_2 to terms in Q_1 such that:

- μ does not change constants, i.e., $\mu(c) = c$ for every constant c
- $x_i = \mu(y_i)$ for each $i = 1, \ldots, n$
- if Q_2 has a query atom $R(t_1, \ldots, t_m)$ then Q_1 has a query atom $R(\mu(t_1), \ldots, \mu(t_m))$

Theorem 10.3 (Homomorphism Theorem): $Q_1 \sqsubseteq Q_2$ if and only if there is a query homomorphism $Q_2 \rightarrow Q_1$.

\sim decidable (only need to check finitely many mappings from Q_2 to Q_1)
Example

\[Q_1 : \exists x, y, z. \ R(x, y) \land R(y, y) \land R(y, z) \]
\[Q_2 : \exists u, v, w, t. \ R(u, v) \land R(v, w) \land R(w, t) \]
If $\langle d_1, \ldots, d_n \rangle$ is a result of $Q_1[x_1, \ldots, x_n]$ over database \mathcal{I} then:

- there is a mapping ν from variables in Q_1 to the domain of \mathcal{I}
- $d_i = \nu(x_i)$ for all $i = 1, \ldots, m$
- for all atoms $R(t_1, \ldots, t_m)$ of Q_1, we find $\langle \nu(t_1), \ldots, \nu(t_m) \rangle \in R^\mathcal{I}$
 (where we take $\nu(c)$ to mean c for constants c)

$\mathcal{I} \models Q_1[d_1, \ldots, d_n]$ if there is such a homomorphism ν from Q_1 to \mathcal{I}

(Note: this is a slightly different formulation from the “homomorphism problem” discussed in a previous lecture, since we keep constants in queries here)
Proof of the Homomorphism Theorem

“⇐”: $Q_1 \sqsubseteq Q_2$ if there is a query homomorphism $Q_2 \rightarrow Q_1$.

(1) Let $\langle d_1, \ldots, d_n \rangle$ be a result of $Q_1[x_1, \ldots, x_n]$ over database I.
(2) Then there is a homomorphism ν from Q_1 to I.
(3) By assumption, there is a query homomorphism $\mu : Q_2 \rightarrow Q_1$.
(4) But then the composition $\nu \circ \mu$, which maps each term t to $\nu(\mu(t))$, is a homomorphism from Q_2 to I.
(5) Hence $\langle \nu(\mu(y_1)), \ldots, \nu(\mu(y_n)) \rangle$ is a result of $Q_2[y_1, \ldots, y_n]$ over I.
(6) Since $\nu(\mu(y_i)) = \nu(x_i) = d_i$, we find that $\langle d_1, \ldots, d_n \rangle$ is a result of $Q_2[y_1, \ldots, y_n]$ over I.

Since this holds for all results $\langle d_1, \ldots, d_n \rangle$ of Q_1, we have $Q_1 \sqsubseteq Q_2$.

(See board for a sketch showing how we compose homomorphisms here)
Proof of the Homomorphism Theorem

“⇒”: there is a query homomorphism $Q_2 \rightarrow Q_1$ if $Q_1 \sqsubseteq Q_2$.

1. Turn $Q_1[x_1, \ldots, x_n]$ into a database I_1 in the natural way:
 - The domain of I_1 are the terms in Q_1
 - For every relation R, we have $\langle t_1, \ldots, t_m \rangle \in R^{I_1}$ exactly if $R(t_1, \ldots, t_m)$ is an atom in Q_1

2. Then Q_1 has a result $\langle x_1, \ldots, x_n \rangle$ over I_1
 (the identity mapping is a homomorphism – actually even an isomorphism)

3. Therefore, since $Q_1 \sqsubseteq Q_2$, $\langle x_1, \ldots, x_n \rangle$ is also a result of Q_2 over I_1

4. Hence there is a homomorphism ν from Q_2 to I_1

5. This homomorphism ν is also a query homomorphism $Q_2 \rightarrow Q_1$.
Implications of the Homomorphism Theorem

The proof has highlighted another useful fact:

The following two are equivalent:

- Finding a homomorphism from Q_2 to Q_1
- Finding a query result for Q_2 over I_1

\leadsto all complexity results for CQ query answering apply

Theorem 10.4: Deciding if $Q_1 \sqsubseteq Q_2$ is NP-complete.

If Q_2 is a tree query (or of bounded treewidth, or of bounded hypertree width) then deciding if $Q_1 \sqsubseteq Q_2$ is polynomial (in fact LOGCFL-complete).

Note that even in the NP-complete case the problem size is rather small (only queries, no databases)
Definition 10.5: A conjunctive query Q is minimal if:

- for all subqueries Q' of Q (that is, queries Q' that are obtained by dropping one or more atoms from Q),
- we find that $Q' \not\equiv Q$.

A minimal CQ is also called a core.

It is useful to minimise CQs to avoid unnecessary joins in query answering.
CQ Minimisation the Direct Way

A simple idea for minimising Q:

- Consider each atom of Q, one after the other
- Check if the subquery obtained by dropping this atom is contained in Q
 (Observe that the subquery always contains the original query.)
- If yes, delete the atom; continue with the next atom

Example 10.6:

Example query $Q[v, w]$: $\exists x, y, z. R(a, y) \land R(x, y) \land S(y, y) \land S(y, z) \land S(z, y) \land T(y, \bar{v}) \land T(y, \bar{w})$
CQ Minimisation the Direct Way

A simple idea for minimising Q:

- Consider each atom of Q, one after the other
- Check if the subquery obtained by dropping this atom is contained in Q
 (Observe that the subquery always contains the original query.)
- If yes, delete the atom; continue with the next atom

Example 10.6: Example query $Q[v, w]$:

\[
\exists x, y, z. R(a, y) \land R(x, y) \land S(y, y) \land S(y, z) \land S(z, y) \land T(y, v) \land T(y, w)
\]

\sim Simpler notation: write as set and mark answer variables

\[
\{ R(a, y), R(x, y), S(y, y), S(y, z), S(z, y), T(y, \bar{v}), T(y, \bar{w}) \}\]
CQ Minimisation Example

\{R(a, y), R(x, y), S(y, y), S(y, z), S(z, y), T(y, \bar{v}), T(y, \bar{w})\}

Can we map the left side homomorphically to the right side?

\begin{align*}
R(a, y) & \quad \rightarrow \quad R(a, y) \\
R(x, y) & \quad \rightarrow \quad R(x, y) \\
S(y, y) & \quad \rightarrow \quad S(y, y) \\
S(y, z) & \quad \rightarrow \quad S(y, z) \\
S(z, y) & \quad \rightarrow \quad S(z, y) \\
T(y, \bar{v}) & \quad \rightarrow \quad T(y, \bar{v}) \\
T(y, \bar{w}) & \quad \rightarrow \quad T(y, \bar{w})
\end{align*}
CQ Minimisation Example

\{R(a, y), R(x, y), S(y, y), S(y, z), S(z, y), T(y, \bar{v}), T(y, \bar{w})\}

Can we map the left side homomorphically to the right side?

<table>
<thead>
<tr>
<th>Right Side</th>
<th>Left Side</th>
</tr>
</thead>
<tbody>
<tr>
<td>R(a, y)</td>
<td>R(a, y)</td>
</tr>
<tr>
<td>R(x, y)</td>
<td>R(x, y)</td>
</tr>
<tr>
<td>S(y, y)</td>
<td>S(y, y)</td>
</tr>
<tr>
<td>S(y, z)</td>
<td>S(y, z)</td>
</tr>
<tr>
<td>S(z, y)</td>
<td>S(z, y)</td>
</tr>
<tr>
<td>T(y, \bar{v})</td>
<td>T(y, \bar{v})</td>
</tr>
<tr>
<td>T(y, \bar{w})</td>
<td>T(y, \bar{w})</td>
</tr>
</tbody>
</table>
CQ Minimisation Example

\{R(a, y), R(x, y), S(y, y), S(y, z), S(z, y), T(y, \bar{v}), T(y, \bar{w})\}

Can we map the left side homomorphically to the right side?

<table>
<thead>
<tr>
<th>Original</th>
<th>Mapped</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>R(a, y)</td>
<td>R(a, y)</td>
<td>Keep (cannot map constant a)</td>
</tr>
<tr>
<td>R(x, y)</td>
<td>R(x, y)</td>
<td></td>
</tr>
<tr>
<td>S(y, y)</td>
<td>S(y, y)</td>
<td></td>
</tr>
<tr>
<td>S(y, z)</td>
<td>S(y, z)</td>
<td></td>
</tr>
<tr>
<td>S(z, y)</td>
<td>S(z, y)</td>
<td></td>
</tr>
<tr>
<td>T(y, \bar{v})</td>
<td>T(y, \bar{v})</td>
<td></td>
</tr>
<tr>
<td>T(y, \bar{w})</td>
<td>T(y, \bar{w})</td>
<td></td>
</tr>
</tbody>
</table>
CQ Minimisation Example

\{R(a, y), R(x, y), S(y, y), S(y, z), S(z, y), T(y, \bar{v}), T(y, \bar{w})\}

Can we map the left side homomorphically to the right side?

<table>
<thead>
<tr>
<th>Left Side</th>
<th>Right Side</th>
</tr>
</thead>
<tbody>
<tr>
<td>R(a, y)</td>
<td>R(a, y)</td>
</tr>
<tr>
<td>R(x, y)</td>
<td>R(x, y)</td>
</tr>
<tr>
<td>S(y, y)</td>
<td>S(y, y)</td>
</tr>
<tr>
<td>S(y, z)</td>
<td>S(y, z)</td>
</tr>
<tr>
<td>S(z, y)</td>
<td>S(z, y)</td>
</tr>
<tr>
<td>T(y, \bar{v})</td>
<td>T(y, \bar{v})</td>
</tr>
<tr>
<td>T(y, \bar{w})</td>
<td>T(y, \bar{w})</td>
</tr>
</tbody>
</table>
CQ Minimisation Example

\[\{ R(a, y), R(x, y), S(y, y), S(y, z), S(z, y), T(y, \bar{v}), T(y, \bar{w}) \} \]

Can we map the left side homomorphically to the right side?

<table>
<thead>
<tr>
<th>Left Side</th>
<th>Right Side</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>(R(a, y))</td>
<td>(R(a, y))</td>
<td>Keep (cannot map constant (a))</td>
</tr>
<tr>
<td>(\underline{R(x, y)})</td>
<td>(\underline{R(x, y)})</td>
<td>Drop; map (R(x, y)) to (R(a, y))</td>
</tr>
<tr>
<td>(S(y, y))</td>
<td>(S(y, y))</td>
<td></td>
</tr>
<tr>
<td>(S(y, z))</td>
<td>(S(y, z))</td>
<td></td>
</tr>
<tr>
<td>(S(z, y))</td>
<td>(S(z, y))</td>
<td></td>
</tr>
<tr>
<td>(T(y, \bar{v}))</td>
<td>(T(y, \bar{v}))</td>
<td></td>
</tr>
<tr>
<td>(T(y, \bar{w}))</td>
<td>(T(y, \bar{w}))</td>
<td></td>
</tr>
</tbody>
</table>

Core:
\[\exists y. R(a, y) \land S(y, y) \land T(y, \bar{v}) \land T(y, \bar{w}) \]
CQ Minimisation Example

\{R(a, y), R(x, y), S(y, y), S(y, z), S(z, y), T(y, \bar{v}), T(y, \bar{w})\}

Can we map the left side homomorphically to the right side?

<table>
<thead>
<tr>
<th>Left Side</th>
<th>Right Side</th>
<th>Mapping</th>
</tr>
</thead>
<tbody>
<tr>
<td>R(a, y)</td>
<td>R(a, y)</td>
<td>Keep (cannot map constant a)</td>
</tr>
<tr>
<td>R(x, y)</td>
<td>R(x, y)</td>
<td>Drop; map R(x, y) to R(a, y)</td>
</tr>
<tr>
<td>S(y, y)</td>
<td>S(y, y)</td>
<td>?</td>
</tr>
<tr>
<td>S(y, z)</td>
<td>S(y, z)</td>
<td></td>
</tr>
<tr>
<td>S(z, y)</td>
<td>S(z, y)</td>
<td></td>
</tr>
<tr>
<td>T(y, \bar{v})</td>
<td>T(y, \bar{v})</td>
<td></td>
</tr>
<tr>
<td>T(y, \bar{w})</td>
<td>T(y, \bar{w})</td>
<td></td>
</tr>
</tbody>
</table>

Core: \(\exists y. R(a, y) \land S(y, y) \land T(y, \bar{v}) \land T(y, \bar{w}) \)
CQ Minimisation Example

\{R(a, y), R(x, y), S(y, y), S(y, z), S(z, y), T(y, \bar{v}), T(y, \bar{w})\}

Can we map the left side homomorphically to the right side?

\begin{align*}
R(a, y) & \quad R(a, y) \quad \text{Keep (cannot map constant } a) \\
\text{---} & \quad \text{---} \\
R(x, y) & \quad R(x, y) \quad \text{Drop; map } R(x, y) \text{ to } R(a, y) \\
S(y, y) & \quad S(y, y) \quad \text{Keep (no other atom of form } S(t, t)) \\
S(y, z) & \quad S(y, z) \\
S(z, y) & \quad S(z, y) \\
T(y, \bar{v}) & \quad T(y, \bar{v}) \\
T(y, \bar{w}) & \quad T(y, \bar{w})
\end{align*}
CQ Minimisation Example

\{R(a, y), R(x, y), S(y, y), S(y, z), S(z, y), T(y, \bar{v}), T(y, \bar{w})\}

Can we map the left side homomorphically to the right side?

<table>
<thead>
<tr>
<th>Left Side</th>
<th>Right Side</th>
<th>Decision</th>
</tr>
</thead>
<tbody>
<tr>
<td>(R(a, y))</td>
<td>(R(a, y))</td>
<td>Keep (cannot map constant (a))</td>
</tr>
<tr>
<td>(R(x, y))</td>
<td>(R(x, y))</td>
<td>Drop; map (R(x, y)) to (R(a, y))</td>
</tr>
<tr>
<td>(S(y, y))</td>
<td>(S(y, y))</td>
<td>Keep (no other atom of form (S(t, t)))</td>
</tr>
<tr>
<td>(S(y, z))</td>
<td>(S(y, z))</td>
<td></td>
</tr>
<tr>
<td>(S(z, y))</td>
<td>(S(z, y))</td>
<td></td>
</tr>
<tr>
<td>(T(y, \bar{v}))</td>
<td>(T(y, \bar{v}))</td>
<td></td>
</tr>
<tr>
<td>(T(y, \bar{w}))</td>
<td>(T(y, \bar{w}))</td>
<td></td>
</tr>
</tbody>
</table>
CQ Minimisation Example

\{R(a, y), R(x, y), S(y, y), S(y, z), S(z, y), T(y, \bar{v}), T(y, \bar{w})\}

Can we map the left side homomorphically to the right side?

<table>
<thead>
<tr>
<th>Left</th>
<th>Right</th>
<th>Decision</th>
</tr>
</thead>
<tbody>
<tr>
<td>R(a, y)</td>
<td>R(a, y)</td>
<td>Keep (cannot map constant a)</td>
</tr>
<tr>
<td>R(x, y)</td>
<td>R(x, y)</td>
<td>Drop; map R(x, y) to R(a, y)</td>
</tr>
<tr>
<td>S(y, y)</td>
<td>S(y, y)</td>
<td>Keep (no other atom of form S(t, t))</td>
</tr>
<tr>
<td>S(y, z)</td>
<td>S(y, z)</td>
<td>Drop; map S(y, z) to S(y, y)</td>
</tr>
<tr>
<td>S(z, y)</td>
<td>S(z, y)</td>
<td></td>
</tr>
<tr>
<td>T(y, \bar{v})</td>
<td>T(y, \bar{v})</td>
<td></td>
</tr>
<tr>
<td>T(y, \bar{w})</td>
<td>T(y, \bar{w})</td>
<td></td>
</tr>
</tbody>
</table>

Core: \exists y. R(a, y) \land S(y, y) \land T(y, \bar{v}) \land T(y, \bar{w})
CQ Minimisation Example

\{R(a, y), R(x, y), S(y, y), S(y, z), S(z, y), T(y, \bar{v}), T(y, \bar{w})\}

Can we map the left side homomorphically to the right side?

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(R(a, y))</td>
<td>(R(a, y))</td>
<td>Keep (cannot map constant (a))</td>
</tr>
<tr>
<td>(R(x, y))</td>
<td>(R(x, y))</td>
<td>Drop; map (R(x, y)) to (R(a, y))</td>
</tr>
<tr>
<td>(S(y, y))</td>
<td>(S(y, y))</td>
<td>Keep (no other atom of form (S(t, t)))</td>
</tr>
<tr>
<td>(S(y, z))</td>
<td>(S(y, z))</td>
<td>Drop; map (S(y, z)) to (S(y, y))</td>
</tr>
<tr>
<td>(S(z, y))</td>
<td>(S(z, y))</td>
<td></td>
</tr>
<tr>
<td>(T(y, \bar{v}))</td>
<td>(T(y, \bar{v}))</td>
<td></td>
</tr>
<tr>
<td>(T(y, \bar{w}))</td>
<td>(T(y, \bar{w}))</td>
<td></td>
</tr>
</tbody>
</table>

Core: \(\exists y. R(a, y) \land S(y, y) \land T(y, \bar{v}) \land T(y, \bar{w})\)
CQ Minimisation Example

\{R(a, y), R(x, y), S(y, y), S(y, z), S(z, y), T(y, \bar{v}), T(y, \bar{w})\}

Can we map the left side homomorphically to the right side?

<table>
<thead>
<tr>
<th></th>
<th>\text{R}(a, y)</th>
<th>\text{R}(a, y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>\text{R}(x, y)</td>
<td>\text{R}(x, y)</td>
<td>\text{Keep (cannot map constant a)}</td>
</tr>
<tr>
<td>\text{S}(y, y)</td>
<td>\text{S}(y, y)</td>
<td>\text{Keep (no other atom of form S(t, t))}</td>
</tr>
<tr>
<td>\text{S}(y, z)</td>
<td>\text{S}(y, z)</td>
<td>\text{Drop; map S(y, z) to S(y, y)}</td>
</tr>
<tr>
<td>\text{S}(z, y)</td>
<td>\text{S}(z, y)</td>
<td>\text{Drop; map S(z, y) to S(y, y)}</td>
</tr>
<tr>
<td>\text{T}(y, \bar{v})</td>
<td>\text{T}(y, \bar{v})</td>
<td></td>
</tr>
<tr>
<td>\text{T}(y, \bar{w})</td>
<td>\text{T}(y, \bar{w})</td>
<td></td>
</tr>
</tbody>
</table>
CQ Minimisation Example

\{R(a, y), R(x, y), S(y, y), S(y, z), S(z, y), T(y, \bar{v}), T(y, \bar{w})\}

Can we map the left side homomorphically to the right side?

- **R(a, y)**
 - Keep (cannot map constant a)

- **R(x, y)**
 - Drop; map R(x, y) to R(a, y)

- **S(y, y)**
 - Keep (no other atom of form S(t, t))

- **S(y, z)**
 - Drop; map S(y, z) to S(y, y)

- **S(z, y)**
 - Drop; map S(z, y) to S(y, y)

- **T(y, \bar{v})**
 - Keep (cannot map answer variable)

- **T(y, \bar{w})**
 - Keep (cannot map answer variable)

Core: \(\exists y. R(a, y) \land S(y, y) \land T(y, \bar{v}) \land T(y, \bar{w})\)
CQ Minimisation Example

\{R(a, y), R(x, y), S(y, y), S(y, z), S(z, y), T(y, \bar{v}), T(y, \bar{w})\}

Can we map the left side homomorphically to the right side?

\begin{align*}
R(a, y) & \quad R(a, y) \quad \text{Keep (cannot map constant } a) \\
R(x, y) & \quad R(x, y) \quad \text{Drop; map } R(x, y) \text{ to } R(a, y) \\
S(y, y) & \quad S(y, y) \quad \text{Keep (no other atom of form } S(t, t)\}) \\
S(y, z) & \quad S(y, z) \quad \text{Drop; map } S(y, z) \text{ to } S(y, y) \\
S(z, y) & \quad S(z, y) \quad \text{Drop; map } S(z, y) \text{ to } S(y, y) \\
T(y, \bar{v}) & \quad T(y, \bar{v}) \quad \text{Keep (cannot map answer variable)} \\
T(y, \bar{w}) & \quad T(y, \bar{w})
\end{align*}
CQ Minimisation Example

\{R(a, y), R(x, y), S(y, y), S(y, z), S(z, y), T(y, \bar{v}), T(y, \bar{w})\}

Can we map the left side homomorphically to the right side?

- \(R(a, y)\) \quad \text{Keep (cannot map constant \(a\))}
- \(R(x, y)\) \quad \text{Drop; map \(R(x, y)\) to \(R(a, y)\)}
- \(S(y, y)\) \quad \text{Keep (no other atom of form \(S(t, t)\))}
- \(S(y, z)\) \quad \text{Drop; map \(S(y, z)\) to \(S(y, y)\)}
- \(S(z, y)\) \quad \text{Drop; map \(S(z, y)\) to \(S(y, y)\)}
- \(T(y, \bar{v})\) \quad \text{Keep (cannot map answer variable)}
- \(T(y, \bar{w})\) \quad ?
CQ Minimisation Example

\{R(a, y), R(x, y), S(y, y), S(y, z), S(z, y), T(y, \bar{v}), T(y, \bar{w})\}

Can we map the left side homomorphically to the right side?

- **R(a, y)** → **R(a, y)**: Keep (cannot map constant a)
- **R(x, y)** → **R(x, y)**: Drop; map **R(x, y)** to **R(a, y)**
- **S(y, y)** → **S(y, y)**: Keep (no other atom of form **S(t, t)**)
- **S(y, z)** → **S(y, z)**: Drop; map **S(y, z)** to **S(y, y)**
- **S(z, y)** → **S(z, y)**: Drop; map **S(z, y)** to **S(y, y)**
- **T(y, \bar{v})** → **T(y, \bar{v})**: Keep (cannot map answer variable)
- **T(y, \bar{w})** → **T(y, \bar{w})**: Keep (cannot map answer variable)
CQ Minimisation Example

\{R(a, y), R(x, y), S(y, y), S(y, z), S(z, y), T(y, \overline{v}), T(y, \overline{w})\}

Can we map the left side homomorphically to the right side?

<table>
<thead>
<tr>
<th>Left Side</th>
<th>Right Side</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>(R(a, y))</td>
<td>(R(a, y))</td>
<td>Keep (cannot map constant (a))</td>
</tr>
<tr>
<td>(R(x, y))</td>
<td>(R(x, y))</td>
<td>Drop; map (R(x, y)) to (R(a, y))</td>
</tr>
<tr>
<td>(S(y, y))</td>
<td>(S(y, y))</td>
<td>Keep (no other atom of form (S(t, t)))</td>
</tr>
<tr>
<td>(S(y, z))</td>
<td>(S(y, z))</td>
<td>Drop; map (S(y, z)) to (S(y, y))</td>
</tr>
<tr>
<td>(S(z, y))</td>
<td>(S(z, y))</td>
<td>Drop; map (S(z, y)) to (S(y, y))</td>
</tr>
<tr>
<td>(T(y, \overline{v}))</td>
<td>(T(y, \overline{v}))</td>
<td>Keep (cannot map answer variable)</td>
</tr>
<tr>
<td>(T(y, \overline{w}))</td>
<td>(T(y, \overline{w}))</td>
<td>Keep (cannot map answer variable)</td>
</tr>
</tbody>
</table>

Core: \(\exists y. R(a, y) \land S(y, y) \land T(y, \overline{v}) \land T(y, \overline{w})\)
CQ Minimisation

Does this algorithm work?

- Is the result minimal?
 Or could it be that some atom that was kept can be dropped later, after some other atoms were dropped?

- Is the result unique?
 Or does the order in which we consider the atoms matter?

Theorem 10.7:
The CQ minimisation algorithm always produces a core, and this result is unique up to query isomorphisms (bijective renaming of non-result variables).

Proof: Exercise
CQ Minimisation

Does this algorithm work?

• Is the result minimal?
 Or could it be that some atom that was kept can be dropped later, after some other atoms were dropped?

• Is the result unique?
 Or does the order in which we consider the atoms matter?

Theorem 10.7: The CQ minimisation algorithm always produces a core, and this result is unique up to query isomorphisms (bijective renaming of non-result variables).

Proof: exercise
How hard is CQ Minimisation?

Even when considering single atoms, the homomorphism question is NP-hard:

Theorem 10.8: Given a conjunctive query Q with an atom A, it is NP-complete to decide if there is a homomorphism from Q to $Q \setminus \{A\}$.
How hard is CQ Minimisation?

Even when considering single atoms, the homomorphism question is NP-hard:

Theorem 10.8: Given a conjunctive query \(Q \) with an atom \(A \), it is NP-complete to decide if there is a homomorphism from \(Q \) to \(Q \setminus \{A\} \).

Proof: We reduce 3-colourability of connected graphs to this special kind of homomorphism problem. (If a graph consists of several connected components, then 3-colourability can be solved independently for each, hence 3-colourability is NP-hard when considering only connected graphs.)
How hard is CQ Minimisation?

Even when considering single atoms, the homomorphism question is NP-hard:

Theorem 10.8: Given a conjunctive query Q with an atom A, it is NP-complete to decide if there is a homomorphism from Q to $Q \setminus \{A\}$.

Proof: We reduce 3-colourability of connected graphs to this special kind of homomorphism problem. (If a graph consists of several connected components, then 3-colourability can be solved independently for each, hence 3-colourability is NP-hard when considering only connected graphs.)

Let G be a connected, undirected graph. Let $<$ be an arbitrary total order on G’s vertices. **Query Q is defined as follows:**
How hard is CQ Minimisation?

Even when considering single atoms, the homomorphism question is NP-hard:

Theorem 10.8: Given a conjunctive query Q with an atom A, it is NP-complete to decide if there is a homomorphism from Q to $Q \setminus \{A\}$.

Proof: We reduce 3-colourability of connected graphs to this special kind of homomorphism problem. (If a graph consists of several connected components, then 3-colourability can be solved independently for each, hence 3-colourability is NP-hard when considering only connected graphs.)

Let G be a connected, undirected graph. Let $<$ be an arbitrary total order on G's vertices.

Query Q is defined as follows:
- Q contains atoms $R(r, g), R(g, r), R(r, b), R(b, r), R(g, b), \text{ and } R(b, r)$
 (the colouring template)
How hard is CQ Minimisation?

Even when considering single atoms, the homomorphism question is NP-hard:

Theorem 10.8: Given a conjunctive query Q with an atom A, it is NP-complete to decide if there is a homomorphism from Q to $Q \setminus \{A\}$.

Proof: We reduce 3-colourability of connected graphs to this special kind of homomorphism problem. (If a graph consists of several connected components, then 3-colourability can be solved independently for each, hence 3-colourability is NP-hard when considering only connected graphs.)

Let G be a connected, undirected graph. Let $< \text{ be an arbitrary total order on } G \text{'s vertices. Query } Q \text{ is defined as follows:}

- Q contains atoms $R(r,g), R(g,r), R(r,b), R(b,r), R(g,b), \text{ and } R(b,r)$ (the colouring template)
- For every undirected edge $\{e,f\}$ in G with $e < f$, Q contains an atom $R(e,f)$
How hard is CQ Minimisation?

Even when considering single atoms, the homomorphism question is NP-hard:

Theorem 10.8: Given a conjunctive query Q with an atom A, it is NP-complete to decide if there is a homomorphism from Q to $Q \setminus \{A\}$.

Proof: We reduce 3-colourability of connected graphs to this special kind of homomorphism problem. (If a graph consists of several connected components, then 3-colourability can be solved independently for each, hence 3-colourability is NP-hard when considering only connected graphs.)

Let G be a connected, undirected graph. Let $<$ be an arbitrary total order on G's vertices.

Query Q is defined as follows:

- Q contains atoms $R(r,g)$, $R(g,r)$, $R(r,b)$, $R(b,r)$, $R(g,b)$, and $R(b,r)$ (the colouring template)
- For every undirected edge $\{e,f\}$ in G with $e < f$, Q contains an atom $R(e,f)$
- For a single (arbitrarily chosen) edge $\{e,f\}$ in G with $e < f$, Q contains an atom $A = R(f,e)$
How hard is CQ Minimisation?

Even when considering single atoms, the homomorphism question is NP-hard:

Theorem 10.8: Given a conjunctive query Q with an atom A, it is NP-complete to decide if there is a homomorphism from Q to $Q \setminus \{A\}$.

Proof: We reduce 3-colourability of connected graphs to this special kind of homomorphism problem. (If a graph consists of several connected components, then 3-colourability can be solved independently for each, hence 3-colourability is NP-hard when considering only connected graphs.)

Let G be a connected, undirected graph. Let $<$ be an arbitrary total order on G's vertices. **Query Q is defined as follows:**

- Q contains atoms $R(r, g), R(g, r), R(r, b), R(b, r), R(g, b),$ and $R(b, r)$ (the colouring template)
- For every undirected edge $\{e, f\}$ in G with $e < f$, Q contains an atom $R(e, f)$
- For a single (arbitrarily chosen) edge $\{e, f\}$ in G with $e < f$, Q contains an atom $A = R(f, e)$

Claim: G is 3-colourable if and only if there is a homomorphism $Q \rightarrow Q \setminus \{A\}$
Proof

Even when considering single atoms, the homomorphism question is NP-hard:

Theorem 10.8: Given a conjunctive query Q with an atom A, it is NP-complete to decide if there is a homomorphism from Q to $Q \setminus \{A\}$.

Proof (continued): (\Rightarrow) If G is 3-colourable then there is a homomorphism $Q \rightarrow Q \setminus \{A\}$.
Proof

Even when considering single atoms, the homomorphism question is NP-hard:

Theorem 10.8: Given a conjunctive query Q with an atom A, it is NP-complete to decide if there is a homomorphism from Q to $Q \setminus \{A\}$.

Proof (continued): (\Rightarrow) If G is 3-colourable then there is a homomorphism $Q \rightarrow Q \setminus \{A\}$.
- Then there is a homomorphism μ from G to the colouring template
- We can extend μ to the colouring template (mapping each colour to itself)
- Then μ is a homomorphism $Q \rightarrow Q \setminus \{A\}$.
Even when considering single atoms, the homomorphism question is NP-hard:

Theorem 10.8: Given a conjunctive query Q with an atom A, it is NP-complete to decide if there is a homomorphism from Q to $Q \setminus \{A\}$.

Proof (continued): (\Rightarrow) If G is 3-colourable then there is a homomorphism $Q \to Q \setminus \{A\}$.

- Then there is a homomorphism μ from G to the colouring template
- We can extend μ to the colouring template (mapping each colour to itself)
- Then μ is a homomorphism $Q \to Q \setminus \{A\}$

(\Leftarrow) If there is a homomorphism $Q \to Q \setminus \{A\}$ then G is 3-colourable.
Even when considering single atoms, the homomorphism question is NP-hard:

Theorem 10.8: Given a conjunctive query Q with an atom A, it is NP-complete to decide if there is a homomorphism from Q to $Q \setminus \{A\}$.

Proof (continued): (\Rightarrow) If G is 3-colourable then there is a homomorphism $Q \rightarrow Q \setminus \{A\}$.

- Then there is a homomorphism μ from G to the colouring template
- We can extend μ to the colouring template (mapping each colour to itself)
- Then μ is a homomorphism $Q \rightarrow Q \setminus \{A\}$

(\Leftarrow) If there is a homomorphism $Q \rightarrow Q \setminus \{A\}$ then G is 3-colourable.

- Let μ be such a homomorphism, and let $A = R(f, e)$.
Proof

Even when considering single atoms, the homomorphism question is NP-hard:

Theorem 10.8: Given a conjunctive query Q with an atom A, it is NP-complete to decide if there is a homomorphism from Q to $Q \setminus \{A\}$.

Proof (continued): (⇒) If G is 3-colourable then there is a homomorphism $Q \rightarrow Q \setminus \{A\}$.

- Then there is a homomorphism μ from G to the colouring template
- We can extend μ to the colouring template (mapping each colour to itself)
- Then μ is a homomorphism $Q \rightarrow Q \setminus \{A\}$

(⇐) If there is a homomorphism $Q \rightarrow Q \setminus \{A\}$ then G is 3-colourable.

- Let μ be such a homomorphism, and let $A = R(f, e)$.
- Since $Q \setminus \{A\}$ contains the pattern $R(s, t), R(t, s)$ only in the colouring template, $\mu(e) \in \{r, g, b\}$ and $\mu(f) \in \{r, g, b\}$.
Proof

Even when considering single atoms, the homomorphism question is NP-hard:

Theorem 10.8: Given a conjunctive query Q with an atom A, it is NP-complete to decide if there is a homomorphism from Q to $Q \setminus \{A\}$.

Proof (continued): (\Rightarrow) If G is 3-colourable then there is a homomorphism $Q \rightarrow Q \setminus \{A\}$.

- Then there is a homomorphism μ from G to the colouring template
- We can extend μ to the colouring template (mapping each colour to itself)
- Then μ is a homomorphism $Q \rightarrow Q \setminus \{A\}$

(\Leftarrow) If there is a homomorphism $Q \rightarrow Q \setminus \{A\}$ then G is 3-colourable.

- Let μ be such a homomorphism, and let $A = R(f, e)$.
- Since $Q \setminus \{A\}$ contains the pattern $R(s, t), R(t, s)$ only in the colouring template, $\mu(e) \in \{r, g, b\}$ and $\mu(f) \in \{r, g, b\}$.
- Since the colouring template is not connected to other atoms of Q, μ must therefore map all elements of Q to the colouring template.
Even when considering single atoms, the homomorphism question is NP-hard:

Theorem 10.8: Given a conjunctive query Q with an atom A, it is NP-complete to decide if there is a homomorphism from Q to $Q \setminus \{A\}$.

Proof (continued): (\Rightarrow) If G is 3-colourable then there is a homomorphism $Q \rightarrow Q \setminus \{A\}$.

- Then there is a homomorphism μ from G to the colouring template
- We can extend μ to the colouring template (mapping each colour to itself)
- Then μ is a homomorphism $Q \rightarrow Q \setminus \{A\}$

(\Leftarrow) If there is a homomorphism $Q \rightarrow Q \setminus \{A\}$ then G is 3-colourable.

- Let μ be such a homomorphism, and let $A = R(f, e)$.
- Since $Q \setminus \{A\}$ contains the pattern $R(s, t), R(t, s)$ only in the colouring template, $\mu(e) \in \{r, g, b\}$ and $\mu(f) \in \{r, g, b\}$.
- Since the colouring template is not connected to other atoms of Q, μ must therefore map all elements of Q to the colouring template.
- Hence, μ induces a 3-colouring.
Even when considering single atoms, the homomorphism question is NP-hard:

Theorem 10.8: Given a conjunctive query Q with an atom A, it is NP-complete to decide if there is a homomorphism from Q to $Q \setminus \{A\}$.

Proof (summary): For an arbitrary connected graph G, we constructed a query Q with atom A, such that

- G is 3-colourable if and only if
- there is a homomorphism $Q \to Q \setminus \{A\}$.

Since the former problem is NP-hard, so is the latter.

Inclusion in NP is obvious (just guess the homomorphism).
Even when considering single atoms, the homomorphism question is NP-hard:

Theorem 10.8: Given a conjunctive query Q with an atom A, it is NP-complete to decide if there is a homomorphism from Q to $Q \setminus \{A\}$.

Proof (summary): For an arbitrary connected graph G, we constructed a query Q with atom A, such that

- G is 3-colourable if and only if
- there is a homomorphism $Q \to Q \setminus \{A\}$.

Since the former problem is NP-hard, so is the latter.

Inclusion in NP is obvious (just guess the homomorphism).

Checking minimality is the dual problem, hence:

Theorem 10.9: Deciding if a conjunctive query Q is minimal (that is: a core) is coNP-complete.

However, the size of queries is usually small enough for minimisation to be feasible.
Perfect query optimisation is possible for conjunctive queries

\[\leadsto \text{Homomorphism problem, similar to query answering} \]

\[\leadsto \text{NP-complete} \]

Using this, conjunctive queries can effectively be minimised

Open questions:

- How to really use EF games to get some results?
- If FO cannot express all tractable queries, what can?