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Abstract

A left-forbidding grammar, introduced in this paper, is a context-free grammar, where a set of nonterminal symbols
is attached to each context-free production. Such a production can rewrite a nonterminal provided that no symbol
from the attached set occurs to the left of the rewritten nonterminal in the current sentential form. The present
paper discusses cooperating distributed grammar systems with left-forbidding grammars as components and gives
some new characterizations of language families of the Chomsky hierarchy. In addition, it also proves that twelve
nonterminals are enough for cooperating distributed grammar systems working in the terminal derivation mode with
two left-forbidding components (including erasing productions) to characterize the family of recursively enumerable
languages.
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1. Introduction

Recently, formal language theory has intensively investigated various types of cooperating distributed grammar
systems, which are devices consisting of several cooperating components represented by grammars or other rewriting
mechanisms that work in some prescribed derivation modes (the reader is referred to [1, 2, 3] for more information).
The present paper continues with this investigation by discussing cooperating distributed grammar systems based
upon components represented by slightly modified context-free grammars that perform left-restricted derivations,
which fulfill an important role in most computer science areas that make use of grammars. Indeed, in practice, most
top-down parsers are based upon left-restricted derivations, and, in theory, these left-restricted derivations frequently
simplify the discussion concerning the performance of various grammatical derivations. In addition, they often result
in an increase of the generative power, so the grammar systems that work in this left-restricted way are significant
from a theoretical point of view as well.

More precisely, each component of the cooperating distributed grammar systems under investigation is a left-
forbidding grammar, which in essence represents a context-free grammar in which a set of nonterminal symbols is
attached to each context-free production. Such a production can rewrite a nonterminal provided that no symbol from
its attached set occurs to the left of the rewritten nonterminal in the current sentential form. Here is the difference
compared to the random forbidding context grammars (see [4, 5]) because, in random forbidding context grammars,
symbols from the attached set are looked up in the whole sentential form. As the key topic of investigation, we
concentrate our attention on the generative power of cooperating distributed grammar systems with left-forbidding
components with respect to the number of components, derivation modes, and erasing productions. Furthermore,
we also discuss the descriptional complexity of the erasing variant of these cooperating distributed grammar systems
working in the terminal derivation mode.
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Specifically, with respect to the terminal derivation mode (t-mode, for short), =k-mode, and ≥k-mode of cooper-
ation, for all k ≥ 2, this paper demonstrates that with a single component, cooperating distributed grammar systems
with left-forbidding components generate only the family of context-free languages, while with two or more left-
forbidding components, they generate the whole family of recursively enumerable languages. In addition, with two
or more left-forbidding components and without erasing productions, these cooperating distributed grammar systems
characterize the family of context sensitive languages. In comparison with the previous results, these main results are
of some interest because cooperating distributed grammar systems with two context-free components generate only
the family of context-free languages (considering the terminal derivation mode), or a subfamily of the family of matrix
languages (considering the =k-mode and ≥k-mode, for k ≥ 2), see Theorem 3.1 in [3]. Concentrating its attention on
the economical description of these systems, this paper demonstrates that cooperating distributed grammar systems
working in the terminal derivation mode with two left-forbidding components and no more than twelve nonterminals
are computationally complete.

Recently, formal language theory has discussed some random forbidding/permitting context grammars that are
not as powerful as random context grammars (see [5] and [6], respectively), and some cooperating distributed gram-
mar systems with random forbidding/permitting context components working in the terminal derivation mode that are
as powerful as random context grammars (see [7] and [8], respectively). In view of these results, the results of the
present paper are of some interest because the cooperation increases the generative power of cooperating distributed
grammar systems with left-forbidding components from the power of context-free grammars to the power of context
sensitive or phrase structure grammars. On the other hand, however, this increase does not hold for cooperating dis-
tributed grammar systems with random context components because they are as powerful as random context grammars
(see [9, 10]). Consequently, although random context grammars are more powerful than left-forbidding grammars,
cooperating random context grammars are not as powerful as cooperating left-forbidding grammars.

Finally, left-permitting grammars, whose precise generative power has not been established yet, are defined anal-
ogously as left-forbidding grammars. Even though these grammars are more powerful than left-forbidding grammars,
cooperating distributed grammar systems with left-permitting components working in the terminal derivation mode
characterize the same family of languages as cooperating distributed grammar systems with left-forbidding compo-
nents (see [8] for more information and results related to the descriptional complexity).

The organization of this paper is as described below. In the next section, preliminary fundamental results and
definitions from formal language theory needed in our paper are recalled. Section 3 presents the main results of this
paper, and Section 4 then compares these results to the related results and the Chomsky hierarchy.

2. Preliminaries and Definitions

In this paper, we assume that the reader is familiar with formal language theory (see [11]). For a finite nonempty
set (an alphabet) V , let V∗ represent the free monoid generated by V . Let the unit of V∗ be denoted by ε, and let
V+ = V∗ − {ε}. For w ∈ V∗, let |w| denote the length of w, wR denote the mirror image of w, alph(w) denote the set
of all symbols occurring in w, and for any two strings u, v ∈ V∗, let shuffle(u, v) = {x1y1x2y2 . . . xnyn : n ≥ 1, u =

x1x2 . . . xn, v = y1y2 . . . yn, xi, yi ∈ V∗, for i = 1, . . . , n} be a shuffle of letters of u and v keeping the order of letters
in u and v unchanged. Let LCF , LCS , LRE , LET0L, and L ε

MAT denote the families of context-free, context sensitive,
recursively enumerable, ET0L, and matrix languages (generated by matrix grammars with context-free productions),
respectively.

A state grammar (see [12]) is a construct G = (N,T,Q, P, S , q0), where N, T , and Q are pairwise disjoint alphabets
of nonterminals, terminals, and states, respectively, V = N ∪ T is the total alphabet, S ∈ N is the start symbol, q0 ∈ Q
is the start state, and P is a finite set of productions of the form (A, p) → (x, q), where p, q ∈ Q are states, A ∈ N is a
nonterminal symbol, and x ∈ V∗ is a string of symbols.

For any two strings u, v ∈ V∗ and any two states p, q ∈ Q, we define the relation (uAv, p)⇒ (uxv, q) provided that

1. (A, p)→ (x, q) ∈ P, and
2. for every (B, p)→ (y, t) ∈ P, we have that B < alph(u).

Thus, according to condition (2), the leftmost derivation is considered, i.e., the leftmost nonterminal that can be
replaced in the current state has to be replaced. As usual, the relation⇒ is extended to⇒n, for n ≥ 0,⇒+, and⇒∗.
The language generated by G is defined as L(G) = {w ∈ T ∗ : (S , q0) ⇒∗ (w, q) for some q ∈ Q} and is said to be a
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state language. The family of all state languages is denoted by L ε
S T . In what follows, the superscript ε is omitted

whenever the family of languages is generated by state grammars without erasing productions.
A left-forbidding grammar is a quadruple G = (N,T, P, S ), where N is the alphabet of nonterminals, T is the

alphabet of terminals such that N ∩ T = ∅, V = N ∪ T is the total alphabet, S ∈ N is the start symbol, and P is a finite
set of productions of the form (A → x,W), where A → x is a context-free production, A ∈ N and x ∈ V∗, and W ⊆ N
is a finite set of nonterminals.

For any two strings u, v ∈ V∗ and a production (A→ x,W) ∈ P, we define the relation uAv⇒ uxv provided that

alph(u) ∩W = ∅.

In the standard manner, the relation ⇒ is extended to ⇒n, for n ≥ 0, ⇒+, and ⇒∗. The language generated by G is
defined as L(G) = {w ∈ T ∗ : S ⇒∗ w} and is said to be a left-forbidding language. The family of all left-forbidding
languages is denoted by L ε

LF . Again, the superscript ε is omitted whenever the family of languages is generated by
left-forbidding grammars containing no erasing productions.

For any two strings u, v ∈ V∗, we define the relation u terminally derives v in G, written as u ⇒t v, provided that
u⇒+ v in G and there is no w ∈ V∗ such that v⇒ w. In addition, for k ≥ 1, we define the relations u⇒≤k v, u⇒=k v,
and u⇒≥k v in G provided that u⇒n v in G where n ≤ k, n = k, and n ≥ k, respectively.

A left-forbidding cooperating distributed grammar system is a construct Γ = (N,T, P1, P2, . . . , Pn, S ), for some
n ≥ 1, where each component (defined as) Gi = (N,T, Pi, S ), for i = 1, 2, . . . , n, is a left-forbidding grammar.

For any two strings u, v ∈ V∗ and an integer 1 ≤ i ≤ n, let u ⇒i v denote a derivation step made by the ith
component of Γ, i.e., by the left-forbidding grammar Gi. In addition, let u ⇒t

i v in Γ if u ⇒t v in Gi. We say that
Γ generates w ∈ T ∗ in the terminal derivation mode (t-mode, for short) (≤k-mode, =k-mode, ≥k-mode, for k ≥ 1)
provided that there exist m ≥ 1 and αi ∈ V∗, for i = 1, . . . ,m, such that αi ⇒

t αi+1 (αi ⇒
≤k αi+1, αi ⇒

=k αi+1,
αi ⇒

≥k αi+1, respectively) in Hi, where Hi ∈ {G1, . . . ,Gn} is a component of Γ, for i = 1, . . . ,m − 1, α1 = S , and
αm = w. Symbolically, S ⇒t

Γ
w, S ⇒≤k

Γ
w, S ⇒=k

Γ
w, S ⇒≥k

Γ
w, respectively. As usual, Γ is omitted whenever

the meaning is clear. The language generated by Γ in the f -mode, for f ∈ {t} ∪ {≤k,=k,≥k : k ≥ 1}, is defined as
L(Γ, f ) = {w ∈ T ∗ : S ⇒ f

Γ
w}. The family of languages generated by left-forbidding cooperating distributed grammar

systems with n components working in the f -mode is denoted by L ε
LF(n, f ). Again, the superscript ε is omitted

whenever the components are nonerasing.

3. Results

First, it is not hard to see that L ε
LF(1, f ) = L ε

LF and LLF(1, f ) = LLF , for any derivation mode f ∈ {t} ∪ {≤k,=
k,≥k : k ≥ 1}.

The following theorem proves that these language families coincide with the family of context-free languages.

Theorem 1. L ε
LF = LCF .

Proof. As any context-free grammar is also a left-forbidding grammar, where empty sets are attached to each of its
productions, the inclusion L ε

LF ⊇ LCF holds.
To prove the other inclusion, L ε

LF ⊆ LCF , let G = (N,T, P, S ) be a left-forbidding grammar, and let G′ =

(N,T, P′, S ) be a context-free grammar, where P′ = {A → x : (A → x,W) ∈ P}. As any successful derivation of G is
also a successful derivation of G′, the inclusion L(G) ⊆ L(G′) holds.

On the other hand, let w ∈ L(G′) be a string successfully generated by the context-free grammar G′. Then, it
is well-known that there exists a successful leftmost derivation of w in G′. Such a successful leftmost derivation
is, however, also possible in G because the leftmost nonterminal can always be rewritten. Thus, the other inclusion
L(G′) ⊆ L(G) holds as well, which completes the proof.

As an immediate consequence of this theorem, we have that erasing productions can be eliminated from any
left-forbidding grammar.

Corollary 2. LLF = L ε
LF = LCF .
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In comparison with the previous result and the fact that cooperating distributed grammar systems with two context-
free components working in the terminal derivation mode characterize the family of context-free languages (see [3]),
the following result is of some interest.

Theorem 3. L ε
LF(2, t) = LRE .

Proof. On the one hand, it is not hard to prove (by standard techniques) that L ε
LF(2, t) ⊆ LRE .

On the other hand, let L ∈ LRE be a recursively enumerable language. Then, as shown in [13], there is a state
grammar G = (N,T,Q, P, S , q0) such that L(G) = L. Construct a left-forbidding cooperating distributed grammar
system

Γ = (NΓ,T, P1, P2, S ′)

with NΓ = N ∪ N1 ∪ N2 ∪ {S ′, $,@, F}, where S ′, $, @, and F are new symbols,

• N1 = {[p, q, i] : p, q ∈ Q and i ∈ {1, 2}},

• N2 = {〈w〉 : (X, p)→ (w, q) ∈ P},

P1 is constructed as follows:

1. for all r ∈ Q, add (S ′ → [q0, r, 2]S $, ∅) to P1,
2. for all r, s ∈ Q, add ([r, s, 1]→ [r, s, 2], ∅) to P1,
3. for all (B, q)→ (w, h) ∈ P, add (B→ 〈w〉,W) to P1, where

W = N2 ∪ {@} ∪ {[r, s, 1] : r, s ∈ Q}

∪ {[r, s, 2] : r, s ∈ Q, r , q or s , h}

∪ {X ∈ N : (X, q)→ (y, t) ∈ P},

4. for all r, s ∈ Q, add ([r, s, 1]→ @, ∅) to P1,
5. add ($→ ε,NΓ − {@}) to P1,
6. add ($→ F,N2) to P1,

and P2 is constructed as follows:

7. for all p, q, r ∈ Q, add ([p, q, 2]→ [q, r, 1], ∅) to P2,
8. for all 〈w〉 ∈ N2 and W = {[p, q, 2] : p, q ∈ Q}, add (〈w〉 → w,W) to P2,
9. add (@→ ε, ∅) to P2.

Informally, Γ simulates a derivation of G so that it records the configuration of G in the first nonterminal of every
sentential form except for the very last one. More precisely, this first nonterminal is of the form [q, h, i], where q is
the current state of G, h is a (guessed) state G moves to from q, and i ∈ {1, 2} is an auxiliary symbol distinguishing
between the two components of Γ. Then, production (1) starts the derivation, production (2) changes 1 to 2 in the
configuration nonterminal to allow the application of production (3), which simulates the derivation step of G so that
it verifies that

• no more than one simulation like this has been made (see the set N2);

• [r, s, 1] has been replaced with [r, s, 2];

• r = q and s = h if simulating (B, q)→ (w, h) ∈ P;

• no nonterminal that can be rewritten occurs to the left of the rewritten symbol in the current sentential form.

Production (6) verifies that at least one production of G has been simulated; otherwise, as the terminal derivation mode
is used, $ has to be replaced with F, which blocks the derivation because F can never be replaced with a terminal
string. A formal proof follows.
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To prove that L(G) ⊆ L(Γ), consider a derivation (S , q0) ⇒∗ (α, q) ⇒ (β, h) in G. Let α = a1a2 . . . an and
β = b1b2 . . . bm, where for i = 1, . . . , n and j = 1, . . . ,m, ai, b j ∈ V . We prove that [q, h, 1]α$ ⇒+ [h, r, 1]β$ in Γ,
for any state r ∈ Q. Thus, assume that (α, q) ⇒ (β, h) by a production (A, q) → (w, h) ∈ P, i.e., ai = A, for some
1 ≤ i ≤ n, and

(a1 . . . ai−1Aai+1 . . . an, q)⇒ (a1 . . . ai−1wai+1 . . . an, h)

in G. Then,

[q, h, 1]a1 . . . ai−1Aai+1 . . . an$ ⇒1 [q, h, 2]a1 . . . ai−1Aai+1 . . . an$
⇒1 [q, h, 2]a1 . . . ai−1〈w〉ai+1 . . . an$
⇒2 [h, r, 1]a1 . . . ai−1〈w〉ai+1 . . . an$
⇒2 [h, r, 1]a1 . . . ai−1wai+1 . . . an$

in Γ by productions constructed in (2), (3), (7), and (8), respectively, for any state r ∈ Q. Note that after the application
of production (3), no production of P1 is applicable. Of course, no further production of G can be simulated by
production (3) because, considering the forbidding set W, there is no X to the left of A which can be replaced in
G being in state q, and all symbols to the right of A which can be rewritten in G cannot be simulated in Γ (by
productions constructed in (3)) because of the set N2 in their forbidding sets. Then, after the application of production
(8), no further production of P2 is applicable. Thus, the derivation is a derivation in the terminal derivation mode.
Furthermore, if α ∈ T ∗, then [q, h, 1]α$ ⇒1 @α$ ⇒1 @α ⇒2 α by productions constructed in (4), (5), and (9),
respectively. Clearly, Γ simulates a derivation of G so that it starts by a production constructed in (1), i.e., S ′ ⇒1
[q0, r, 2]S $, for any state r ∈ Q. The derivation then proceeds as shown above. Hence, the inclusion holds.

On the other hand, to prove that L(Γ) ⊆ L(G), consider a successful derivation of Γ. Such a derivation is of the
form

S ⇒t
1 . . .⇒

t
2 x0 ⇒

t
1 x1 ⇒

t
2 x2 ⇒

t
1 . . .⇒

t
2 [r, s, 1]w$⇒t

1 @w⇒t
2 w ,

for some w ∈ T ∗ and r, s ∈ Q. Consider a subderivation x0 ⇒
t
1 x1 ⇒

t
2 x2. If x2 = w, then the subderivation is

the end of the derivation. Thus, assume that x2 , w. Then, x0 = [p, q, 1]a1a2 . . . an$, for some n ≥ 1, ai ∈ V , for
i = 1, . . . , n, and p, q ∈ Q. Assume that alph(a1a2 . . . an) ∩ N , ∅. Then, only productions constructed in (2) and (4)
are applicable. Assume that a production constructed in (4) is applied, i.e., [p, q, 1]a1a2 . . . an$ ⇒ @a1a2 . . . an$. As
there is a nonterminal symbol in the sentential form (different from $ and @), production (5) cannot be applied, and
production (6) blocks the derivation. Therefore, only production (2) is applicable to x0, i.e.,

[p, q, 1]a1a2 . . . an$⇒ [p, q, 2]a1a2 . . . an$ .

Then, production (3) has to be applied, otherwise production (6) blocks the derivation, i.e.,

[p, q, 2]a1 . . . A . . . an$⇒ [p, q, 2]a1 . . . 〈w〉 . . . an$ ,

for some (A, p) → (w, q) ∈ P. In addition, it follows from the forbidding set of production (3) that there is no
applicable production (X, p) → (y, r) ∈ P with X appearing to the left of the rewritten symbol A. As there is no
applicable production in P1, x1 = [p, q, 2]a1 . . . 〈w〉 . . . an$. Then, in P2, only a production constructed in (7), followed
by a production constructed in (8), is applicable, i.e.,

[p, q, 2]a1 . . . 〈w〉 . . . an$ ⇒ [q, r, 1]a1 . . . 〈w〉 . . . an$
⇒ [q, r, 1]a1 . . .w . . . an$ ,

for any state r ∈ Q. The proof now proceeds by induction. As any derivation of Γ starts by a production constructed
in (1), i.e., S ′ ⇒1 [q0, r, 2]S $, for any r ∈ Q, and then proceeds as proved above, the sequences of classes of produc-
tions applied during successful derivations form a regular language described by the following regular expression

1378(2378)∗459 .

Hence, the theorem holds.
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To prove the following consequence, recall that it is known that LS T = LCS (see [12]). Then, we have the
following corollary.

Corollary 4. For all n ≥ 2, LLF(n, t) = LCS .

Proof. LLF(n, t) ⊆ LCS follows from the workspace theorem (see Theorem III.10.1 in [11]). To prove the other
inclusion, let L ⊆ T ∗ be a context sensitive language. Then, L = L1 ∪

⋃
a,b∈T (a · aLb · b), where L1 is a finite language,

aL = {a}\L is the left quotient of L with the singleton language {a}, and aLb = aL/{b} is the right quotient of aL
with the singleton language {b}. As LCS is obviously closed under right and left quotient with a singleton language,
LLF(n, t) is obviously closed under union, and by an obvious modification of productions (5) and (9) in the proof of
Theorem 3, we can easily show that a · L′ · b ∈ LLF(n, t) for any context sensitive language L′ ⊆ T ∗ and symbols
a, b ∈ T .

As a consequence of Theorem 3 and Corollary 4, we have the following results concerning the other derivation
modes.

Theorem 5. L ε
LF(2,=2) = LRE and LLF(2,=2) = LCS .

Proof. To prove this theorem, consider the proof of Theorem 3 and replace production (9) with two productions
(@→ @′, ∅) and (@′ → ε, ∅), for some new symbol @′.

Corollary 6. For all n ≥ 2 and f ∈ {≥k,=k : k ≥ 2}, L ε
LF(n, f ) = LRE and LLF(n, f ) = LCS .

Proof. To prove this corollary, consider the proof of Theorem 3 and modify (analogously as in the proof of the
previous theorem) the productions constructed in (1), (2), (4), and (7) to generate the same strings but in k − 1 steps,
production (9) to generate the same string in k steps, and, in addition, correspondingly modify the forbidding sets in
productions constructed in (3) and (8).

Finally, the following lemma shows the power of the remaining derivation modes.

Theorem 7. For n ≥ 2 and f ∈ {=1,≥1} ∪ {≤k : k ≥ 1}, L ε
LF(n, f ) = LCF .

Proof. Consider a left-forbidding cooperating distributed grammar system Γ = (N,T, P1, P2, . . . , Pn, S ), and let G =

(N,T, P1 ∪ P2 ∪ . . . ∪ Pn, S ) be a left-forbidding grammar. Clearly, any derivation of Γ is a derivation of G and vice
versa. The proof now follows from Theorem 1.

Using the terminal derivation mode, the following result demonstrates that if erasing productions are allowed, the
number of nonterminal symbols can be bounded.

Theorem 8. Every recursively enumerable language is generated by a cooperating distributed grammar system work-
ing in the terminal derivation mode with two left-forbidding components and twelve nonterminals.

Proof. Let L be a recursively enumerable language. By [14], there exists a grammar G = ({S , A, B,C,D},T, P ∪
{AB→ ε,CD→ ε}, S ) such that the set of productions P contains only context-free productions of these three forms:
(i) S → uS a, (ii) S → uS v, (iii) S → ε, where u ∈ {A,C}∗, v ∈ {B,D}∗, a ∈ T , and L = L(G). In addition, any
successful derivation of G is divided into two parts. The first part is of the form S ⇒∗ w1S w2w ⇒ w1w2w, made
only by context-free productions from P, where w1 ∈ {A,C}∗, w2 ∈ {B,D}∗, and w ∈ T ∗. The other part is of the form
w1w2w⇒∗ w, made only by productions AB→ ε and CD→ ε.

Let Γ = (N,T, P1, P2, S ′′) be a left-forbidding cooperating distributed grammar system, where

N = {S ′′, S ′, S , A, A′, B, B′,C,C′,D,D′, $} ,

P1 contains the following productions:

1. (S ′′ → S ′$, ∅),
2. (S ′ → S ′uRa, ∅) if S → uS a ∈ P,
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3. (S ′ → S , ∅),
4. (S → S uRv, ∅) if S → uS v ∈ P,
5. (S → ε, ∅),
6. (X′ → ε, ∅), for all X ∈ {A, B,C,D},
7. ($→ ε, {A, B,C,D, A′, B′,C′,D′, S ′, S }),

and P2 contains these productions:

8. (A→ A′, {A,C, A′,C′}),
9. (C → C′, {A,C, A′,C′}),

10. (B→ B′, {B,D, B′,D′}),
11. (D→ D′, {B,D, B′,D′}),
12. ($→ $, {B′,C′}),
13. ($→ $, {A′,D′}).

To prove that L(G) ⊆ L(Γ), consider a successful derivation of the form S ⇒∗ w1S w2w ⇒ w1w2w ⇒∗ w in
G. Then, it is easy to see that S ′′ ⇒1 S ′$ ⇒∗1 Sω$ ⇒1 ω$ in Γ, where ω ∈ shuffle(wR

1 ,w2w). Note that this
is a terminal derivation of P1 allowing to switch to P2. Without loss of generality, we can assume that w1w2w =

w′1ABw′2w, in which AB is rewritten by production AB → ε in G. Then, by productions (8) and (10), ω$ ⇒t
2 ω

′$,
where ω′ ∈ shuffle(A′w′R1 , B

′w′2w). After that, ω′$ ⇒t
1 ω′′$, by production (6), where ω′′ ∈ shuffle(w′R1 ,w

′
2w) and

alph(ω′′) ∩ N , ∅. If alph(ω′′) ∩ N = ∅, then also production (7) has to be applied, finishing the derivation. A
completion of this part of the proof is simple and left to the reader. Thus, we have S ′′ ⇒t

Γ
w.

On the other hand, to prove that L(Γ) ⊆ L(G), note that the derivation of Γ starts as S ′′ ⇒t
1 ω$ by productions

(1) to (5), where ω ∈ shuffle(w1,w2w), w1 ∈ {A,C}∗, w2 ∈ {B,D}∗, and w ∈ T ∗. Thus, it is easy to see that
S ⇒∗ wR

1 S w2w ⇒ wR
1 w2w in G. By examining the form of w1, we will see that w1 = h(w2), for a homomorphism

h : {B,D}∗ → {A,C}∗ defined as h(B) = A and h(D) = C. To show this, assume that w1 = Aw′1, for some w′1 ∈ {A,C}
∗.

Then, as no production of P1 is applicable, a production of P2 is applied. Clearly, production (9) is not applicable. If
production (11) is applied, which means that w2 = Dw′2, for some w′2 ∈ {B,D}

∗, then production (10) is not applicable.
However, production (12) is applicable, which blocks the derivation. Therefore, production (10) has to be applied.
That is, w2 = Bw′2, for some w′2 ∈ {B,D}

∗. As the derivation is terminal, production (8) is also applied. Now, neither
production (12) nor (13) is applicable. Hence, w1 = Aw′1 implies that w2 = Bw′2, for some w′2 ∈ {B,D}

∗. After that,
the component P2 is blocked, and P1 proceeds the derivation, removing A′ and B′ by productions constructed in (6).
Analogously, it can be proved that w1 = Cw′1, for some w′1 ∈ {A,C}

∗, implies that w2 = Dw′2, for some w′2 ∈ {B,D}
∗,

and that if w1 = ε, then also w2 = ε. Thus, by induction, it follows that w1 = h(w2). Moreover, if w′1 = w′2 = ε, the
terminal derivation also removes $ by production (7). Summarized, wR

1 w2w = w′R1 ABw′2w ⇒ w′R1 w′2w ⇒∗ w in G by
productions AB→ ε and CD→ ε, i.e., S ⇒∗ w in G.

4. Conclusion

Let n ≥ 1 be an integer, and let L ε
CF(n, f ) denote the family of languages generated by cooperating distributed

grammar systems with n context-free components working in the f -mode, for f ∈ {t} ∪ {≤k,=k,≥k : k ≥ 1}. As usual,
the superscript ε is omitted whenever the erasing productions are not allowed in context-free components. Recall that
it is well-known (see [3]) that

• LCF = L ε
CF(2, t) ⊂ L ε

CF(3, t) = L ε
CF(4, t) = . . . = LET0L ⊂ LCS and

• LCF = L ε
CF(1, f ) ⊂ L ε

CF(2, f ) ⊆ L ε
CF(3, f ) ⊆ . . . ⊆ L ε

MAT ⊂ LRE ,

for all derivation modes f ∈ {=k,≥k : k ≥ 2}. The last proper inclusion is shown in [15]. Note also that the first item
holds unchanged if ε is removed, while, in the second item, L ε

MAT ⊂ LRE can be replaced with LMAT ⊂ LCS . Thus,
surprisingly, although LCF = L ε

LF , we have shown that, for all n ≥ 1, L ε
CF(n, t) ⊂ L ε

LF(2, t).
Analogously, for all n ≥ 3, m ≥ 2, and f ∈ {=k,≥k : k ≥ 2},

• L ε
LF(1, t) = L ε

CF(2, t) ⊂ L ε
CF(n, t) ⊂ L ε

LF(2, t) = LRE ,
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• LLF(1, t) = LCF(2, t) ⊂ LCF(n, t) ⊂ LLF(2, t) = LCS ,

• L ε
LF(1, f ) = L ε

CF(1, f ) ⊂ L ε
CF(m, f ) ⊂ L ε

LF(2, f ) = LRE ,

• LLF(1, f ) = LCF(1, f ) ⊂ LCF(m, f ) ⊂ LLF(2, f ) = LCS .

Finally, for all n ≥ 2, we have a new characterization of the Chomsky hierarchy LCF ⊂ LCS ⊂ LRE in terms of
left-forbidding cooperating distributed grammar systems: LLF(1, f ) = L ε

LF(1, f ) ⊂ LLF(n, f ) ⊂ L ε
LF(n, f ), for all

f ∈ {t} ∪ {=k,≥k : k ≥ 2}.
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