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Motivation

• Goal: Approach to computing stable models of logic programs,
based on concepts from

– Constraint Processing (CP) and
– Satisfiability Testing (SAT)

• Idea: View inferences in ASP as unit propagation on nogoods
• Benefits:

– A uniform constraint-based framework for different
kinds of inferences in ASP

– Advanced techniques from the areas of CP and SAT
– Highly competitive implementation
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Assignments

• An assignment A over dom(A) = atom(P) ∪ body(P) is a sequence

(σ1, . . . ,σn)

of signed literals σi of form Tv or Fv for v ∈ dom(A) and 1 ≤ i ≤ n

• Tv expresses that v is true and Fv that it is false

• The complement, σ, of a literal σ is defined as Tv = Fv and Fv = Tv

• A ◦ σ stands for the result of appending σ to A

• Given A = (σ1, . . . ,σk−1,σk, . . . ,σn), we let A[σk] = (σ1, . . . ,σk−1)

• We sometimes identify an assignment with the set of its literals
• Given this, we access true and false propositions in A via

AT = {v ∈ dom(A) | Tv ∈ A} and AF = {v ∈ dom(A) | Fv ∈ A}
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Nogoods, solutions, and unit propagation

• A nogood is a set {σ1, . . . ,σn} of signed literals,
expressing a constraint violated by any assignment
containing σ1, . . . ,σn

• An assignment A such that AT ∪ AF = dom(A) and AT ∩ AF = ∅
is a solution for a set ∆ of nogoods, if δ 6⊆ A for all δ ∈ ∆

• For a nogood δ, a literal σ ∈ δ, and an assignment A, we say that
σ is unit-resulting for δ wrt A, if

(1) δ \ A = {σ} and
(2) σ 6∈ A

• For a set ∆ of nogoods and an assignment A, unit propagation is the iterated process of extending
A with unit-resulting literals until no further literal is unit-resulting for any nogood in ∆
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Nogoods from logic programs
via program completion

When introducing auxiliary atoms vB for rule bodies B, the completion of a logic program P can be
defined as follows:

{vB ↔ a1 ∧ · · · ∧ am ∧ ¬am+1 ∧ · · · ∧ ¬an |
B ∈ body(P) and B = {a1, . . . , am,∼am+1, . . . ,∼an}}

∪ {a↔ vB1 ∨ · · · ∨ vBk |
a ∈ atom(P) and bodyP(a) = {B1, . . . , Bk}} ,

where bodyP(a) = {body(r) | r ∈ P and head(r) = a}
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Nogoods from logic programs
via program completion

• The (body-oriented) equivalence

vB ↔ a1 ∧ · · · ∧ am ∧ ¬am+1 ∧ · · · ∧ ¬an

can be decomposed into two implications:
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Nogoods from logic programs
via program completion

• The (body-oriented) equivalence

vB ↔ a1 ∧ · · · ∧ am ∧ ¬am+1 ∧ · · · ∧ ¬an

can be decomposed into two implications:

(1) vB → a1 ∧ · · · ∧ am ∧ ¬am+1 ∧ · · · ∧ ¬an

is equivalent to the conjunction of

¬vB ∨ a1, . . . , ¬vB ∨ am, ¬vB ∨ ¬am+1, . . . , ¬vB ∨ ¬an

and induces the set of nogoods

∆(B) = { {TB, Fa1}, . . . , {TB, Fam}, {TB, Tam+1}, . . . , {TB, Tan} }
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Nogoods from logic programs
via program completion

• The (body-oriented) equivalence

vB ↔ a1 ∧ · · · ∧ am ∧ ¬am+1 ∧ · · · ∧ ¬an

can be decomposed into two implications:

(2) a1 ∧ · · · ∧ am ∧ ¬am+1 ∧ · · · ∧ ¬an → vB

gives rise to the nogood

δ(B) = {FB, Ta1, . . . , Tam, Fam+1, . . . , Fan}
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Nogoods from logic programs
via program completion

• Analogously, the (atom-oriented) equivalence

a↔ vB1 ∨ · · · ∨ vBk

yields the nogoods

(1) ∆(a) = { {Fa, TB1}, . . . , {Fa, TBk} } and

(2) δ(a) = {Ta, FB1, . . . , FBk}
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Nogoods from logic programs
via loop formulas

Let P be a normal logic program and recall that:
• For L ⊆ atom(P), the external supports of L for P are

ESP(L) = {r ∈ P | head(r) ∈ L and body(r)+ ∩ L = ∅}

• The (disjunctive) loop formula of L for P is

LFP(L) =
(∨

A∈LA
)
→
(∨

r∈ESP(L)body(r)
)

≡
(∧

r∈ESP(L)¬body(r)
)
→
(∧

A∈L¬A
)

– Note: The loop formula of L enforces all atoms in L to be false
whenever L is not externally supported

• The external bodies of L for P are

EBP(L) = {body(r) | r ∈ ESP(L)}
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Nogoods from logic programs
loop nogoods

• For a logic program P and some ∅ ⊂ U ⊆ atom(P),
define the loop nogood of an atom a ∈ U as

λ(a, U) = {Ta, FB1, . . . , FBk}

where EBP(U) = {B1, . . . , Bk}

• We get the following set of loop nogoods for P:

ΛP =
⋃
∅⊂U⊆atom(P){λ(a, U) | a ∈ U}

• The set ΛP of loop nogoods denies cyclic support among true atoms
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Example

• Consider the program  x← ∼y
y← ∼x

u← x
u← v
v← u, y



• For u in the set {u, v}, we obtain the loop nogood:

λ(u, {u, v}) = {Tu, F{x}}

Similarly for v in {u, v}, we get:

λ(v, {u, v}) = {Tv, F{x}}
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Characterization of stable models

Theorem
Let P be a logic program. Then,

X ⊆ atom(P) is a stable model of P iff
X = AT ∩ atom(P) for a (unique) solution A for ∆P ∪ ΛP

Some remarks
• Nogoods in ΛP augment ∆P with conditions checking for unfounded sets, in

particular, those being loops
• While |∆P| is linear in the size of P, ΛP may contain exponentially many

(non-redundant) loop nogoods
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Towards conflict-driven search

Boolean constraint solving algorithms pioneered for SAT led to:

• Traditional DPLL-style approach:
(DPLL stands for ‘Davis-Putnam-Logemann-Loveland’):

– (Unit) propagation
– (Chronological) backtracking

– in ASP, eg smodels

• Modern CDCL-style approach:
(CDCL stands for ‘Conflict-Driven Constraint Learning’):

– (Unit) propagation
– Conflict analysis (via resolution)
– Learning + Backjumping + Assertion

– in ASP, eg clasp
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DPLL-style solving

loop
propagate // deterministically assign literals

if no conflict then
if all variables assigned then return solution
else decide // non-deterministically assign some literal

else
if top-level conflict then return unsatisfiable
else

backtrack // unassign literals propagated after last decision
flip // assign complement of last decision literal
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CDCL-style solving

loop
propagate // deterministically assign literals

if no conflict then
if all variables assigned then return solution
else decide // non-deterministically assign some literal

else
if top-level conflict then return unsatisfiable
else

analyze // analyze conflict and add conflict constraint
backjump // unassign literals until conflict constraint is unit
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Outline of CDNL-ASP algorithm

• Keep track of deterministic consequences by unit propagation on:
– Program completion [∆P]
– Loop nogoods, determined and recorded on demand [ΛP]
– Dynamic nogoods, derived from conflicts and unfounded sets [∇]

• When a nogood in ∆P ∪∇ becomes violated:
– Analyze the conflict by resolution

(until reaching a Unique Implication Point, short: UIP)
– Learn the derived conflict nogood δ
– Backjump to the earliest (heuristic) choice such that the

complement of the UIP is unit-resulting for δ
– Assert the complement of the UIP and proceed

(by unit propagation)
• Terminate when either:

– Finding a stable model (a solution for ∆P ∪ ΛP)
– Deriving a conflict independently of (heuristic) choices
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Algorithm 1: CDNL-ASP

Input : A normal program P
Output : A stable model of P or “no stable model”

A := ∅ // assignment over atom(P) ∪ body(P)
∇ := ∅ // set of recorded nogoods
dl := 0 // decision level

loop
(A,∇) := NogoodPropagation(P,∇, A)

if ε ⊆ A for some ε ∈ ∆P ∪∇ then // conflict

if max({dlevel(σ) | σ ∈ ε} ∪ {0}) = 0 then return no stable model

(δ, dl) := ConflictAnalysis(ε, P,∇, A)
∇ := ∇∪ {δ} // (temporarily) record conflict nogood
A := A \ {σ ∈ A | dl < dlevel(σ)} // backjumping

else if AT ∪ AF = atom(P) ∪ body(P) then // stable model
return AT ∩ atom(P)

else
σd := Select(P,∇, A) // decision
dl := dl + 1
dlevel(σd) := dl
A := A ◦ σd



Explanations

• Decision level dl, initially set to 0, is used to count the number of heuristically chosen literals in
assignment A

• For a heuristically chosen literal σd = Ta or σd = Fa, respectively, we require
a ∈ (atom(P) ∪ body(P)) \ (AT ∪ AF)

• For any literal σ ∈ A, dlevel(σ) denotes the decision level of σ, i.e. the value dl had when σ was
assigned

• A conflict is detected from violation of a nogood ε ⊆ ∆P ∪∇
• A conflict at decision level 0 (where A contains no heuristically chosen literals) indicates

non-existence of stable models
• A nogood δ derived by conflict analysis is asserting, that is,

some literal is unit-resulting for δ at a decision level k < dl
– After learning δ and backjumping to decision level k,

at least one literal is newly derivable by unit propagation
– No explicit flipping of heuristically chosen literals!
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Example: CDNL-ASP

Consider

P =

{
x← ∼y
y← ∼x

u← x, y
u← v

v← x
v← u, y

w← ∼x,∼y
}

dl σd σ δ

1 Tu
2 F{∼x,∼y}

Fw {Tw, F{∼x,∼y}} = δ(w)
3 F{∼y}

Fx {Tx, F{∼y}} = δ(x)
F{x} {T{x}, Fx} ∈ ∆({x})
F{x, y} {T{x, y}, Fx} ∈ ∆({x, y})
...

...
{Tu, F{x}, F{x, y}} = λ(u, {u, v}) 8
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Outline

1 Motivation

2 Boolean constraints

3 Nogoods from logic programs
Nogoods from program completion
Nogoods from loop formulas

4 Conflict-driven nogood learning
CDNL-ASP Algorithm
Nogood Propagation
Conflict Analysis
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Outline of NogoodPropagation

• Derive deterministic consequences via:
– Unit propagation on ∆P and ∇;
– Unfounded sets U ⊆ atom(P)

• Note that U is unfounded if EBP(U) ⊆ AF

– Note: For any a ∈ U, we have (λ(a, U) \ {Ta}) ⊆ A

• An “interesting” unfounded set U satisfies:

∅ ⊂ U ⊆ (atom(P) \ AF)

• Wrt a fixpoint of unit propagation,
such an unfounded set contains some loop of P

– Note: Tight programs do not yield “interesting” unfounded sets !
• Given an unfounded set U and some a ∈ U, adding λ(a, U) to ∇ triggers a conflict or further

derivations by unit propagation
– Note: Add loop nogoods atom by atom to eventually falsify all a ∈ U
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Algorithm 2: NogoodPropagation

Input : A normal program P, a set ∇ of nogoods, and an assignment A.
Output : An extended assignment and set of nogoods.

U := ∅ // unfounded set

loop
repeat

if δ ⊆ A for some δ ∈ ∆P ∪∇ then return (A,∇) // conflict

Σ := {δ ∈ ∆P ∪∇ | δ \ A = {σ},σ /∈ A} // unit-resulting nogoods
if Σ 6= ∅ then let σ ∈ δ \ A for some δ ∈ Σ in

dlevel(σ) := max({dlevel(ρ) | ρ ∈ δ \ {σ}} ∪ {0})
A := A ◦ σ

until Σ = ∅

if loop(P) = ∅ then return (A,∇)

U := U \ AF

if U = ∅ then U := UnfoundedSet(P, A)

if U = ∅ then return (A,∇) // no unfounded set ∅ ⊂ U ⊆ atom(P) \ AF

let a ∈ U in
∇ := ∇∪ {{Ta} ∪ {FB | B ∈ EBP(U)}} // record loop nogood



Requirements for UnfoundedSet

• Implementations of UnfoundedSet must guarantee the following for a result U
(1) U ⊆ (atom(P) \ AF)
(2) EBP(U) ⊆ AF

(3) U = ∅ iff there is no nonempty unfounded subset of (atom(P) \ AF)

• Beyond that, there are various alternatives, such as:
– Calculating the greatest unfounded set
– Calculating unfounded sets within strongly connected components of the positive atom

dependency graph of P

– Usually, the latter option is implemented in ASP solvers
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Example: NogoodPropagation

Consider

P =

{
x← ∼y
y← ∼x

u← x, y
u← v

v← x
v← u, y

w← ∼x,∼y
}

dl σd σ δ

1 Tu
2 F{∼x,∼y}

Fw {Tw, F{∼x,∼y}} = δ(w)
3 F{∼y}

Fx {Tx, F{∼y}} = δ(x)
F{x} {T{x}, Fx} ∈ ∆({x})
F{x, y} {T{x, y}, Fx} ∈ ∆({x, y})
T{∼x} {F{∼x}, Fx} = δ({∼x})
Ty {F{∼y}, Fy} = δ({∼y})
T{v} {Tu, F{x, y}, F{v}} = δ(u)
T{u, y} {F{u, y}, Tu, Ty} = δ({u, y})
Tv {Fv, T{u, y}} ∈ ∆(v)

{Tu, F{x}, F{x, y}} = λ(u, {u, v}) 8

TU Dresden, 2 July 2018 Deduction Systems slide 67 of 86



Outline

1 Motivation

2 Boolean constraints

3 Nogoods from logic programs
Nogoods from program completion
Nogoods from loop formulas

4 Conflict-driven nogood learning
CDNL-ASP Algorithm
Nogood Propagation
Conflict Analysis
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Outline of ConflictAnalysis

• Conflict analysis is triggered whenever some nogood δ ∈ ∆P ∪∇ becomes violated, viz. δ ⊆ A, at
a decision level dl > 0

– Note that all but the first literal assigned at dl have been unit-resulting for nogoods
ε ∈ ∆P ∪∇

– If σ ∈ δ has been unit-resulting for ε, we obtain a new violated nogood by resolving δ and ε
as follows:

(δ \ {σ}) ∪ (ε \ {σ})

• Resolution is directed by resolving first over the literal σ ∈ δ derived last, viz. (δ \ A[σ]) = {σ}
– Iterated resolution progresses in inverse order of assignment

• Iterated resolution stops as soon as it generates a nogood δ containing exactly one literal σ
assigned at decision level dl

– This literal σ is called First Unique Implication Point (First-UIP)
– All literals in (δ \ {σ}) are assigned at decision levels smaller than dl
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Algorithm 3: ConflictAnalysis

Input : A non-empty violated nogood δ, a normal program P, a set ∇ of
nogoods, and an assignment A.

Output : A derived nogood and a decision level.

loop
let σ ∈ δ such that δ \ A[σ] = {σ} in

k := max({dlevel(ρ) | ρ ∈ δ \ {σ}} ∪ {0})
if k = dlevel(σ) then

let ε ∈ ∆P ∪∇ such that ε \ A[σ] = {σ} in
δ := (δ \ {σ}) ∪ (ε \ {σ}) // resolution

else return (δ, k)
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Example: ConflictAnalysis

Consider

P =

{
x← ∼y
y← ∼x

u← x, y
u← v

v← x
v← u, y

w← ∼x,∼y
}

dl σd σ δ
1 Tu
2 F{∼x,∼y}

Fw {Tw, F{∼x,∼y}} = δ(w)
3 F{∼y}

Fx {Tx, F{∼y}} = δ(x)
F{x} {T{x}, Fx} ∈ ∆({x})

{Tu, Fx}

F{x, y} {T{x, y}, Fx} ∈ ∆({x, y})

{Tu, Fx, F{x}}

T{∼x} {F{∼x}, Fx} = δ({∼x})
Ty {F{∼y}, Fy} = δ({∼y})
T{v} {Tu, F{x, y}, F{v}} = δ(u)
T{u, y} {F{u, y}, Tu, Ty} = δ({u, y})
Tv {Fv, T{u, y}} ∈ ∆(v)

{Tu, F{x}, F{x, y}} = λ(u, {u, v}) 8
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Remarks

• There always is a First-UIP at which conflict analysis terminates
– In the worst, resolution stops at the heuristically chosen literal

assigned at decision level dl

• The nogood δ containing First-UIP σ is violated by A, viz. δ ⊆ A

• We have k = max({dl(ρ) | ρ ∈ δ \ {σ}} ∪ {0}) < dl
– After recording δ in ∇ and backjumping to decision level k,
σ is unit-resulting for δ !

– Such a nogood δ is called asserting
• Asserting nogoods direct conflict-driven search into a different region of the search space than

traversed before,
without explicitly flipping any heuristically chosen literal !
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