DEDUCTION SYSTEMS

Answer Set Programming: Solving

Markus Krötzsch
Chair for Knowledge-Based Systems

Slides by Sebastian Rudolph, and based on a lecture by Martin Gebser and Torsten Schaub (CC-By 3.0)

TU Dresden, 2 July 2018
ASP Solving: Overview

1. Motivation
2. Boolean constraints
3. Nogoods from logic programs
 - Nogoods from program completion
 - Nogoods from loop formulas
4. Conflict-driven nogood learning
 - CDNL-ASP Algorithm
 - Nogood Propagation
 - Conflict Analysis
Outline

1. Motivation

2. Boolean constraints

3. Nogoods from logic programs
 - Nogoods from program completion
 - Nogoods from loop formulas

4. Conflict-driven nogood learning
 - CDNL-ASP Algorithm
 - Nogood Propagation
 - Conflict Analysis
Motivation

- **Goal:** Approach to computing stable models of logic programs, based on concepts from
 - Constraint Processing (CP) and
 - Satisfiability Testing (SAT)
- **Idea:** View inferences in ASP as unit propagation on nogoods
- **Benefits:**
 - A uniform constraint-based framework for different kinds of inferences in ASP
 - Advanced techniques from the areas of CP and SAT
 - Highly competitive implementation
Outline

1. Motivation

2. Boolean constraints

3. Nogoods from logic programs
 - Nogoods from program completion
 - Nogoods from loop formulas

4. Conflict-driven nogood learning
 - CDNL-ASP Algorithm
 - Nogood Propagation
 - Conflict Analysis
Assignments

- An assignment A over $\text{dom}(A) = \text{atom}(P) \cup \text{body}(P)$ is a sequence

 $$(\sigma_1, \ldots, \sigma_n)$$

 of signed literals σ_i of form T_v or F_v for $v \in \text{dom}(A)$ and $1 \leq i \leq n$

- T_v expresses that v is true and F_v that it is false
Assignments

• An assignment A over $\text{dom}(A) = \text{atom}(P) \cup \text{body}(P)$ is a sequence

\[(\sigma_1, \ldots, \sigma_n)\]

of signed literals σ_i of form Tv or Fv for $v \in \text{dom}(A)$ and $1 \leq i \leq n$

• The complement, $\overline{\sigma}$, of a literal σ is defined as $\overline{Tv} = Fv$ and $\overline{Fv} = Tv$
Assignments

- An assignment A over $\text{dom}(A) = \text{atom}(P) \cup \text{body}(P)$ is a sequence
 \[(\sigma_1, \ldots, \sigma_n)\]
 of signed literals σ_i of form Tv or Fv for $v \in \text{dom}(A)$ and $1 \leq i \leq n$

- $A \circ \sigma$ stands for the result of appending σ to A
Assignments

• An assignment A over $\text{dom}(A) = \text{atom}(P) \cup \text{body}(P)$ is a sequence

$$\left(\sigma_1, \ldots, \sigma_n \right)$$

of signed literals σ_i of form T_v or F_v for $v \in \text{dom}(A)$ and $1 \leq i \leq n$

• Given $A = (\sigma_1, \ldots, \sigma_{k-1}, \sigma_k, \ldots, \sigma_n)$, we let $A[\sigma_k] = (\sigma_1, \ldots, \sigma_{k-1})$
Assignments

• An assignment A over $\text{dom}(A) = \text{atom}(P) \cup \text{body}(P)$ is a sequence $(\sigma_1, \ldots, \sigma_n)$ of signed literals σ_i of form T_v or F_v for $v \in \text{dom}(A)$ and $1 \leq i \leq n$

• We sometimes identify an assignment with the set of its literals
Assignments

• An assignment A over $\text{dom}(A) = \text{atom}(P) \cup \text{body}(P)$ is a sequence

$$(\sigma_1, \ldots, \sigma_n)$$

of signed literals σ_i of form T_v or F_v for $v \in \text{dom}(A)$ and $1 \leq i \leq n$

• We sometimes identify an assignment with the set of its literals
• Given this, we access true and false propositions in A via

$A^T = \{v \in \text{dom}(A) \mid T_v \in A\}$ and $A^F = \{v \in \text{dom}(A) \mid F_v \in A\}$
Assignments

- An assignment A over $\text{dom}(A) = \text{atom}(P) \cup \text{body}(P)$ is a sequence
 $$(\sigma_1, \ldots, \sigma_n)$$
 of signed literals σ_i of form T_v or F_v for $v \in \text{dom}(A)$ and $1 \leq i \leq n$
- T_v expresses that v is true and F_v that it is false
- The complement, $\bar{\sigma}$, of a literal σ is defined as $\bar{T_v} = F_v$ and $\bar{F_v} = T_v$
- $A \circ \sigma$ stands for the result of appending σ to A
- Given $A = (\sigma_1, \ldots, \sigma_{k-1}, \sigma_k, \ldots, \sigma_n)$, we let $A[\sigma_k] = (\sigma_1, \ldots, \sigma_{k-1})$
- We sometimes identify an assignment with the set of its literals
- Given this, we access true and false propositions in A via

 $$A^T = \{ v \in \text{dom}(A) \mid T_v \in A \} \text{ and } A^F = \{ v \in \text{dom}(A) \mid F_v \in A \}$$
Nogoods, solutions, and unit propagation

- A nogood is a set \(\{\sigma_1, \ldots, \sigma_n\} \) of signed literals, expressing a constraint violated by any assignment containing \(\sigma_1, \ldots, \sigma_n \)
Nogoods, solutions, and unit propagation

- A **nogood** is a set \(\{\sigma_1, \ldots, \sigma_n\}\) of signed literals, expressing a **constraint** violated by any assignment containing \(\sigma_1, \ldots, \sigma_n\).

- An assignment \(A\) such that \(A^T \cup A^F = \text{dom}(A)\) and \(A^T \cap A^F = \emptyset\) is a **solution** for a set \(\Delta\) of nogoods, if \(\delta \not\subseteq A\) for all \(\delta \in \Delta\).
Nogoods, solutions, and unit propagation

- A nogood is a set \(\{\sigma_1, \ldots, \sigma_n\} \) of signed literals, expressing a constraint violated by any assignment containing \(\sigma_1, \ldots, \sigma_n \).

- An assignment \(A \) such that \(A^T \cup A^F = \text{dom}(A) \) and \(A^T \cap A^F = \emptyset \) is a solution for a set \(\Delta \) of nogoods, if \(\delta \not\subseteq A \) for all \(\delta \in \Delta \).

- For a nogood \(\delta \), a literal \(\sigma \in \delta \), and an assignment \(A \), we say that \(\overline{\sigma} \) is unit-resulting for \(\delta \) wrt \(A \), if
 1. \(\delta \setminus A = \{\sigma\} \) and
 2. \(\overline{\sigma} \not\in A \).
Nogoods, solutions, and unit propagation

- A **nogood** is a set \(\{\sigma_1, \ldots, \sigma_n\} \) of signed literals, expressing a **constraint** violated by any assignment containing \(\sigma_1, \ldots, \sigma_n \).

- An assignment \(A \) such that \(A^T \cup A^F = dom(A) \) and \(A^T \cap A^F = \emptyset \) is a **solution** for a set \(\Delta \) of nogoods, if \(\delta \not\subseteq A \) for all \(\delta \in \Delta \).

- For a nogood \(\delta \), a literal \(\sigma \in \delta \), and an assignment \(A \), we say that \(\sigma \) is **unit-resulting** for \(\delta \) wrt \(A \), if

 \(1 \) \(\delta \setminus A = \{\sigma\} \) and

 \(2 \) \(\overline{\sigma} \not\in A \)

- For a set \(\Delta \) of nogoods and an assignment \(A \), **unit propagation** is the iterated process of extending \(A \) with unit-resulting literals until no further literal is unit-resulting for any nogood in \(\Delta \).
Outline

1 Motivation

2 Boolean constraints

3 Nogoods from logic programs
 - Nogoods from program completion
 - Nogoods from loop formulas

4 Conflict-driven nogood learning
 - CDNL-ASP Algorithm
 - Nogood Propagation
 - Conflict Analysis
Outline

1. Motivation
2. Boolean constraints
3. Nogoods from logic programs
 - Nogoods from program completion
 - Nogoods from loop formulas
4. Conflict-driven nogood learning
 - CDNL-ASP Algorithm
 - Nogood Propagation
 - Conflict Analysis
Nogoods from logic programs via program completion

When introducing auxiliary atoms v_B for rule bodies B, the completion of a logic program P can be defined as follows:

$$\{ v_B \leftrightarrow a_1 \land \cdots \land a_m \land \neg a_{m+1} \land \cdots \land \neg a_n \mid B \in \text{body}(P) \text{ and } B = \{a_1, \ldots, a_m, \neg a_{m+1}, \ldots, \neg a_n\} \}$$

$$\cup \{ a \leftrightarrow v_{B_1} \lor \cdots \lor v_{B_k} \mid a \in \text{atom}(P) \text{ and } \text{body}_P(a) = \{B_1, \ldots, B_k\} \},$$

where $\text{body}_P(a) = \{\text{body}(r) \mid r \in P \text{ and } \text{head}(r) = a\}$.
Nogoods from logic programs via program completion

- The (body-oriented) equivalence

\[v_B \leftrightarrow a_1 \land \cdots \land a_m \land \neg a_{m+1} \land \cdots \land \neg a_n \]

... can be decomposed into two implications:
The (body-oriented) equivalence

\[v_B \leftrightarrow a_1 \land \cdots \land a_m \land \neg a_{m+1} \land \cdots \land \neg a_n \]

can be decomposed into two implications:

1. \[v_B \rightarrow a_1 \land \cdots \land a_m \land \neg a_{m+1} \land \cdots \land \neg a_n \]

is equivalent to the conjunction of

\[\neg v_B \lor a_1, \ldots, \neg v_B \lor a_m, \neg v_B \lor \neg a_{m+1}, \ldots, \neg v_B \lor \neg a_n \]

and induces the set of nogoods

\[\Delta(B) = \{ \{TB, Fa_1\}, \ldots, \{TB, Fa_m\}, \{TB, Ta_{m+1}\}, \ldots, \{TB, Ta_n\} \} \]
The (body-oriented) equivalence

\[v_B \leftrightarrow a_1 \land \cdots \land a_m \land \neg a_{m+1} \land \cdots \land \neg a_n \]

can be decomposed into two implications:

(2) \[a_1 \land \cdots \land a_m \land \neg a_{m+1} \land \cdots \land \neg a_n \rightarrow v_B \]

gives rise to the nogood

\[\delta(B) = \{FB, Ta_1, \ldots, Ta_m, Fa_{m+1}, \ldots, Fa_n\} \]
Nogoods from logic programs via program completion

• Analogously, the (atom-oriented) equivalence

\[a \iff v_{B_1} \lor \cdots \lor v_{B_k} \]

yields the nogoods

1. \(\Delta(a) = \{ \{F a, T B_1\}, \ldots, \{F a, T B_k\} \} \) and

2. \(\delta(a) = \{T a, F B_1, \ldots, F B_k\} \)
Outline

1 Motivation

2 Boolean constraints

3 Nogoods from logic programs
 - Nogoods from program completion
 - Nogoods from loop formulas

4 Conflict-driven nogood learning
 - CDNL-ASP Algorithm
 - Nogood Propagation
 - Conflict Analysis
Nogoods from logic programs
via loop formulas

Let P be a normal logic program and recall that:

- For $L \subseteq \text{atom}(P)$, the external supports of L for P are

$$ES_P(L) = \{ r \in P \mid \text{head}(r) \in L \text{ and } \text{body}(r)^+ \cap L = \emptyset \}$$
Nogoods from logic programs
via loop formulas

Let P be a normal logic program and recall that:

- For $L \subseteq \text{atom}(P)$, the external supports of L for P are

$$ES_P(L) = \{ r \in P \mid \text{head}(r) \in L \text{ and } \text{body}(r)^+ \cap L = \emptyset \}$$

- The (disjunctive) loop formula of L for P is

$$LF_P(L) = (\bigvee_{A \in L}^A) \rightarrow (\bigvee_{r \in ES_P(L)}^\text{body}(r))$$

$$\equiv (\bigwedge_{r \in ES_P(L)}^\neg \text{body}(r)) \rightarrow (\bigwedge_{A \in L}^\neg A)$$

- **Note:** The loop formula of L enforces all atoms in L to be false whenever L is not externally supported
Nogoods from logic programs
via loop formulas

Let P be a normal logic program and recall that:

- For $L \subseteq \text{atom}(P)$, the external supports of L for P are
 \[ES_P(L) = \{ r \in P \mid \text{head}(r) \in L \text{ and } \text{body}(r)^+ \cap L = \emptyset \} \]

- The (disjunctive) loop formula of L for P is
 \[LF_P(L) = (\forall A \in L^A) \to (\forall r \in ES_P(L) \text{body}(r)) \]
 \[\equiv (\forall r \in ES_P(L) \neg \text{body}(r)) \to (\forall A \in L \neg A) \]

 \textbf{Note:} The loop formula of L enforces all atoms in L to be false whenever L is not externally supported.

- The external bodies of L for P are
 \[EB_P(L) = \{ \text{body}(r) \mid r \in ES_P(L) \} \]
For a logic program P and some $\emptyset \subset U \subseteq \text{atom}(P)$, define the loop nogood of an atom $a \in U$ as

$$\lambda(a, U) = \{Ta, FB_1, \ldots, FB_k\}$$

where $EB_P(U) = \{B_1, \ldots, B_k\}$
Nogoods from logic programs

loop nogoods

- For a logic program P and some $\emptyset \subset U \subseteq \text{atom}(P)$, define the loop nogood of an atom $a \in U$ as

$$\lambda(a, U) = \{Ta, FB_1, \ldots, FB_k\}$$

where $EB_p(U) = \{B_1, \ldots, B_k\}$

- We get the following set of loop nogoods for P:

$$\Lambda_P = \bigcup_{\emptyset \subset U \subseteq \text{atom}(P)} \{\lambda(a, U) \mid a \in U\}$$
For a logic program P and some $\emptyset \subseteq U \subseteq \text{atom}(P)$, define the loop nogood of an atom $a \in U$ as

$$\lambda(a, U) = \{Ta, FB_1, \ldots, FB_k\}$$

where $EB_P(U) = \{B_1, \ldots, B_k\}$

We get the following set of loop nogoods for P:

$$\Lambda_P = \bigcup_{\emptyset \subseteq U \subseteq \text{atom}(P)} \{\lambda(a, U) | a \in U\}$$

The set Λ_P of loop nogoods denies cyclic support among true atoms
Example

- Consider the program

\[
\begin{align*}
 x &\leftarrow \sim y \\
 y &\leftarrow \sim x \\
 u &\leftarrow v \\
 v &\leftarrow u, y
\end{align*}
\]
Example

- Consider the program
 \[
 \begin{cases}
 x &\leftarrow \neg y \\
 y &\leftarrow \neg x \\
 u &\leftarrow x \\
 u &\leftarrow v \\
 v &\leftarrow u, y
 \end{cases}
 \]

- For \(u \) in the set \(\{u, v\} \), we obtain the loop nogood:
 \[
 \lambda(u, \{u, v\}) = \{Tu, F\{x\}\}
 \]
Example

- Consider the program

\[
\begin{align*}
x & \leftarrow \sim y \\
y & \leftarrow \sim x \\
\end{align*}
\]

\[
\begin{align*}
u & \leftarrow x \\
v & \leftarrow u, y \\
\end{align*}
\]

- For \(u \) in the set \(\{u, v\} \), we obtain the loop nogood:

\[
\lambda(u, \{u, v\}) = \{Tu, F\{x\}\}
\]

Similarly for \(v \) in \(\{u, v\} \), we get:

\[
\lambda(v, \{u, v\}) = \{Tv, F\{x\}\}
\]
Characterization of stable models

Theorem

Let \(P \) be a logic program. Then,
\[
X \subseteq \text{atom}(P) \text{ is a stable model of } P \text{ iff } \\
X = A^T \cap \text{atom}(P) \text{ for a (unique) solution } A \text{ for } \Delta_P \cup \Lambda_P
\]
Characterization of stable models

Theorem

Let P be a logic program. Then,

- $X \subseteq \text{atom}(P)$ is a stable model of P iff
- $X = A^T \cap \text{atom}(P)$ for a (unique) solution A for $\Delta_P \cup \Lambda_P$

Some remarks

- Nogoods in Λ_P augment Δ_P with conditions checking for unfounded sets, in particular, those being loops
- While $|\Delta_P|$ is linear in the size of P, Λ_P may contain exponentially many (non-redundant) loop nogoods
Outline

1. Motivation
2. Boolean constraints
3. Nogoods from logic programs
 - Nogoods from program completion
 - Nogoods from loop formulas
4. Conflict-driven nogood learning
 - CDNL-ASP Algorithm
 - Nogood Propagation
 - Conflict Analysis
Towards conflict-driven search

Boolean constraint solving algorithms pioneered for SAT led to:

- **Traditional DPLL-style approach:**
 (DPLL stands for ‘Davis-Putnam-Logemann-Loveland’):
 - (Unit) propagation
 - (Chronological) backtracking
 - in ASP, eg smodels

- **Modern CDCL-style approach:**
 (CDCL stands for ‘Conflict-Driven Constraint Learning’):
 - (Unit) propagation
 - Conflict analysis (via resolution)
 - Learning + Backjumping + Assertion
 - in ASP, eg clasp
DPLL-style solving

loop
propagate // deterministically assign literals
if no conflict then
 if all variables assigned then return solution
 else decide // non-deterministically assign some literal
else
 if top-level conflict then return unsatisfiable
 else
 backtrack // unassign literals propagated after last decision
 flip // assign complement of last decision literal
CDCL-style solving

loop
 propagate // deterministically assign literals
 if no conflict then
 if all variables assigned then return solution
 else decide // non-deterministically assign some literal
 else
 if top-level conflict then return unsatisfiable
 else
 analyze // analyze conflict and add conflict constraint
 backjump // unassign literals until conflict constraint is unit
Outline

1. Motivation

2. Boolean constraints

3. Nogoods from logic programs
 - Nogoods from program completion
 - Nogoods from loop formulas

4. Conflict-driven nogood learning
 - CDNL-ASP Algorithm
 - Nogood Propagation
 - Conflict Analysis
Outline of CDNL-ASP algorithm

- Keep track of deterministic consequences by unit propagation on:
 - Program completion \([\Delta P]\)
 - Loop nogoods, determined and recorded on demand \([\Lambda P]\)
 - Dynamic nogoods, derived from conflicts and unfounded sets \([\nabla]\)

- When a nogood in \(\Delta P \cup \nabla\) becomes violated:
 - Analyze the conflict by resolution
 - Learn the derived conflict nogood \(\delta\)
 - Backjump to the earliest (heuristic) choice such that the complement of the UIP is unit-resulting for \(\delta\)
 - Assert the complement of the UIP and proceed

- Terminate when either:
 - Finding a stable model (a solution for \(\Delta P \cup \Lambda P\))
 - Deriving a conflict independently of (heuristic) choices
Outline of CDNL-ASP algorithm

- Keep track of deterministic consequences by unit propagation on:
 - Program completion Δ_P
 - Loop nogoods, determined and recorded on demand Λ_P
 - Dynamic nogoods, derived from conflicts and unfounded sets ∇

- When a nogood in $\Delta_P \cup \nabla$ becomes violated:
 - Analyze the conflict by resolution
 (until reaching a Unique Implication Point, short: UIP)
 - Learn the derived conflict nogood δ
 - Backjump to the earliest (heuristic) choice such that the complement of the UIP is unit-resulting for δ
 - Assert the complement of the UIP and proceed
 (by unit propagation)
Outline of CDNL-ASP algorithm

- Keep track of deterministic consequences by unit propagation on:
 - Program completion \([\Delta_P]\)
 - Loop nogoods, determined and recorded on demand \([\Lambda_P]\)
 - Dynamic nogoods, derived from conflicts and unfounded sets \([\nabla]\)

- When a nogood in \(\Delta_P \cup \nabla\) becomes violated:
 - Analyze the conflict by resolution (until reaching a Unique Implication Point, short: UIP)
 - Learn the derived conflict nogood \(\delta\)
 - Backjump to the earliest (heuristic) choice such that the complement of the UIP is unit-resulting for \(\delta\)
 - Assert the complement of the UIP and proceed (by unit propagation)

- Terminate when either:
 - Finding a stable model (a solution for \(\Delta_P \cup \Lambda_P\))
 - Deriving a conflict independently of (heuristic) choices
Algorithm 1: CDNL-ASP

Input : A normal program P
Output : A stable model of P or “no stable model”

$A := \emptyset$
$\n := \emptyset$
$dl := 0$

\[\text{loop}\]

\[(A, \n) := \text{NogoodPropagation}(P, \n, A)\]

\[\text{if } \varepsilon \subseteq A \text{ for some } \varepsilon \in \Delta_P \cup \n \text{ then} \]

\[\text{if } \max(\{\text{dlevel}(\sigma) | \sigma \in \varepsilon \} \cup \{0\}) = 0 \text{ then return } \text{no stable model} \]

\[(\delta, dl) := \text{ConflictAnalysis}(\varepsilon, P, \n, A)\]
$\n := \n \cup \{\delta\}$
$A := A \setminus \{\sigma \in A | dl < \text{dlevel}(\sigma)\}$

\[\text{else if } A^T \cup A^F = \text{atom}(P) \cup \text{body}(P) \text{ then} \]

\[\text{return } A^T \cap \text{atom}(P) \]

\[\text{else} \]

\[\sigma_d := \text{Select}(P, \n, A)\]
$dl := dl + 1$
$d\text{level}(\sigma_d) := dl$
$A := A \circ \sigma_d$

\[\text{end loop}\]
Explanations

- Decision level dl, initially set to 0, is used to count the number of heuristically chosen literals in assignment A
- For a heuristically chosen literal $\sigma_d = Ta$ or $\sigma_d = Fa$, respectively, we require $a \in (\text{atom}(P) \cup \text{body}(P)) \setminus (A^T \cup A^F)$
- For any literal $\sigma \in A$, $dlevel(\sigma)$ denotes the decision level of σ, i.e. the value dl had when σ was assigned
Explanations

- Decision level dl, initially set to 0, is used to count the number of heuristically chosen literals in assignment A.
- For a heuristically chosen literal $\sigma_d = Ta$ or $\sigma_d = Fa$, respectively, we require $a \in (\text{atom}(P) \cup \text{body}(P)) \setminus (A^T \cup A^F)$.
- For any literal $\sigma \in A$, $dlevel(\sigma)$ denotes the decision level of σ, i.e. the value dl had when σ was assigned.
- A conflict is detected from violation of a nogood $\varepsilon \subseteq \Delta_P \cup \nabla$.
- A conflict at decision level 0 (where A contains no heuristically chosen literals) indicates non-existence of stable models.
- A nogood δ derived by conflict analysis is asserting, that is, some literal is unit-resulting for δ at a decision level $k < dl$.
Explanations

- Decision level dl, initially set to 0, is used to count the number of heuristically chosen literals in assignment A.

- For a heuristically chosen literal $\sigma_d = Ta$ or $\sigma_d = Fa$, respectively, we require $a \in (\text{atom}(P) \cup \text{body}(P)) \setminus (A^T \cup A^F)$.

- For any literal $\sigma \in A$, $dlevel(\sigma)$ denotes the decision level of σ, i.e. the value dl had when σ was assigned.

- A conflict is detected from violation of a nogood $\varepsilon \subseteq \Delta_P \cup \nabla$.

- A conflict at decision level 0 (where A contains no heuristically chosen literals) indicates non-existence of stable models.

- A nogood δ derived by conflict analysis is asserting, that is, some literal is unit-resulting for δ at a decision level $k < dl$.
 - After learning δ and backjumping to decision level k, at least one literal is newly derivable by unit propagation.
 - No explicit flipping of heuristically chosen literals!
Example: CDNL-ASP

Consider

\[P = \{ x \leftarrow \sim y, u \leftarrow x, y, v \leftarrow x, w \leftarrow \sim x, \sim y \} \]

<table>
<thead>
<tr>
<th>(dl)</th>
<th>(\sigma_d)</th>
<th>(\bar{\sigma})</th>
<th>(\delta)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Example: CDNL-ASP

Consider

\[P = \{ x \leftarrow \neg y, u \leftarrow x, y, v \leftarrow x, w \leftarrow \neg x, \neg y \} \]

<table>
<thead>
<tr>
<th>(dl)</th>
<th>(\sigma_d)</th>
<th>(\delta)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(Tu)</td>
<td></td>
</tr>
</tbody>
</table>
Example: CDNL-ASP

Consider

\[P = \{ x \leftarrow \neg y \quad u \leftarrow x, y \quad v \leftarrow x \quad w \leftarrow \neg x, \neg y \\
\quad y \leftarrow \neg x \quad u \leftarrow v \quad v \leftarrow u, y \} \]

<table>
<thead>
<tr>
<th>(dl)</th>
<th>(\sigma_d)</th>
<th>(\bar{\sigma})</th>
<th>(\delta)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(Tu)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>(F{\neg x, \neg y})</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Example: CDNL-ASP

Consider

\[P = \left\{ \begin{array}{l}
x \leftarrow \sim y \\
y \leftarrow \sim x \\
u \leftarrow x, y \\
v \leftarrow x \\
w \leftarrow \sim x, \sim y \\
u \leftarrow v \\
v \leftarrow u, y \\
\end{array} \right\} \]

<table>
<thead>
<tr>
<th>dl</th>
<th>(\sigma_d)</th>
<th>(\bar{\sigma})</th>
<th>(\delta)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(Tu)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>(F{\sim x, \sim y})</td>
<td>(F_w)</td>
<td>({ Tw, F{\sim x, \sim y}} = \delta(w))</td>
</tr>
</tbody>
</table>
Example: CDNL-ASP

Consider

\[P = \begin{cases} x \leftarrow \neg y & u \leftarrow x, y & v \leftarrow x & w \leftarrow \neg x, \neg y \\ y \leftarrow \neg x & u \leftarrow v & v \leftarrow u, y \end{cases} \]

<table>
<thead>
<tr>
<th>dl</th>
<th>(\sigma_d)</th>
<th>(\bar{\sigma})</th>
<th>(\delta)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(Tu)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>(F{\neg x, \neg y})</td>
<td>(F_w)</td>
<td>(Tw, F{\neg x, \neg y}) = (\delta(w))</td>
</tr>
<tr>
<td>3</td>
<td>(F{\neg y})</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Example: CDNL-ASP

Consider

\[P = \{ x \leftarrow \sim y, u \leftarrow x, y, v \leftarrow x, w \leftarrow \sim x, \sim y \} \]

<table>
<thead>
<tr>
<th>dl</th>
<th>(\sigma_d)</th>
<th>(\bar{\sigma})</th>
<th>(\delta)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(Tu)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>(F{\sim x, \sim y})</td>
<td>(F_w)</td>
<td>({T_w, F{\sim x, \sim y}} = \delta(w))</td>
</tr>
<tr>
<td>3</td>
<td>(F{\sim y})</td>
<td>(F_x)</td>
<td>({T_x, F{\sim y}} = \delta(x))</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(F{x})</td>
<td>({T{x}, Fx} \in \Delta({x}))</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(F{x, y})</td>
<td>({T{x, y}, Fx} \in \Delta({x, y}))</td>
</tr>
</tbody>
</table>
Example: CDNL-ASP

Consider

\[
P = \left\{ \begin{array}{l}
x \leftarrow \sim y \\
y \leftarrow \sim x \\
u \leftarrow x, y \\
v \leftarrow x \\
w \leftarrow \sim x, \sim y \\
y \leftarrow \sim x \\
u \leftarrow v \\
v \leftarrow u, y \\end{array} \right\}
\]

<table>
<thead>
<tr>
<th>dl</th>
<th>(\sigma_d)</th>
<th>(\bar{\sigma})</th>
<th>(\delta)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(Tu)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>(F{\sim x, \sim y})</td>
<td>(F_w)</td>
<td>({Tw, F{\sim x, \sim y}} = \delta(w))</td>
</tr>
<tr>
<td>3</td>
<td>(F{\sim y})</td>
<td>(Fx)</td>
<td>({Tx, F{\sim y}} = \delta(x))</td>
</tr>
<tr>
<td></td>
<td>(F{x})</td>
<td>(T{x}, Fx)</td>
<td>(\Delta({x}))</td>
</tr>
<tr>
<td></td>
<td>(F{x, y})</td>
<td>(T{x, y}, Fx)</td>
<td>(\Delta({x, y}))</td>
</tr>
<tr>
<td></td>
<td>:::</td>
<td>:::</td>
<td>:::</td>
</tr>
<tr>
<td></td>
<td>{(Tu, F{x}, F{x, y}}} = \lambda(u, {u, v}) \times</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Example: CDNL-ASP

Consider

$$P = \{ x \leftarrow \neg y \quad u \leftarrow x, y \quad v \leftarrow x \quad w \leftarrow \neg x, \neg y \}$$

\[
\begin{array}{|c|c|c|}
\hline
dl & \sigma_d & \bar{\sigma} \\
\hline
1 & T u & \delta \\
\hline
\end{array}
\]
Example: CDNL-ASP

Consider

\[P = \{ x \leftarrow \sim y \quad u \leftarrow x, y \quad v \leftarrow x \quad w \leftarrow \sim x, \sim y \} \]

\[
\begin{array}{|c|c|c|}
\hline
dl & \sigma_d & \vec{\sigma} & \delta \\
\hline
1 & Tu & Tx & \{Tu, Fx\} \in \nabla \\
\hline
\end{array}
\]
Consider

\[P = \left\{ \begin{array}{l}
 x \leftarrow \neg y \\
 y \leftarrow \neg x \\
 u \leftarrow x, y \\
 v \leftarrow x \\
 w \leftarrow \neg x, \neg y \\
 u \leftarrow v \\
 v \leftarrow u, y
\end{array} \right\} \]

<table>
<thead>
<tr>
<th>dl</th>
<th>(\sigma_d)</th>
<th>(\bar{\sigma})</th>
<th>(\delta)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(Tu)</td>
<td>(Tx)</td>
<td>({ Tu, Fx } \in \nabla)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(\vdots)</td>
<td>(\vdots)</td>
</tr>
<tr>
<td></td>
<td>(Tv)</td>
<td>({ Fv, T{x} } \in \Delta(v))</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(Fy)</td>
<td>({ Ty, F{\neg x} } = \delta(y))</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(Fw)</td>
<td>({ Tw, F{\neg x, \neg y} } = \delta(w))</td>
<td></td>
</tr>
</tbody>
</table>
Example: CDNL-ASP

Consider

\[P = \{ x \leftarrow \sim y \quad u \leftarrow x, y \quad v \leftarrow x \quad w \leftarrow \sim x, \sim y \quad y \leftarrow \sim x \quad u \leftarrow v \quad v \leftarrow u, y \} \]

<table>
<thead>
<tr>
<th>(dl)</th>
<th>(\sigma_d)</th>
<th>(\bar{\sigma})</th>
<th>(\delta)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(Tu)</td>
<td>(Tx)</td>
<td>({Tu, Fx} \in \nabla)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(\vdots)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(Tv)</td>
<td>({Fv, Tx} \in \Delta(v))</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(Fy)</td>
<td>({Ty, F{\sim x}} = \delta(y))</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(Fw)</td>
<td>({Tw, F{\sim x, \sim y}} = \delta(w))</td>
<td></td>
</tr>
</tbody>
</table>
Outline

1. Motivation

2. Boolean constraints

3. Nogoods from logic programs
 - Nogoods from program completion
 - Nogoods from loop formulas

4. Conflict-driven nogood learning
 - CDNL-ASP Algorithm
 - Nogood Propagation
 - Conflict Analysis
Outline of NogoodPropagation

- Derive deterministic consequences via:
 - Unit propagation on Δ_P and ∇;
 - Unfounded sets $U \subseteq \text{atom}(P)$

- Note that U is unfounded if $EB_P(U) \subseteq A^F$
 - Note: For any $a \in U$, we have $(\lambda(a, U) \setminus \{Ta\}) \subseteq A$
Outline of NogoodPropagation

- Derive deterministic consequences via:
 - Unit propagation on Δ_P and ∇;
 - Unfounded sets $U \subseteq \text{atom}(P)$
- Note that U is unfounded if $EB_P(U) \subseteq A^F$
 - Note: For any $a \in U$, we have $(\lambda(a, U) \setminus \{Ta\}) \subseteq A$
- An “interesting” unfounded set U satisfies:

$$\emptyset \subset U \subseteq (\text{atom}(P) \setminus A^F)$$

- Wrt a fixpoint of unit propagation,
Outline of NogoodPropagation

- Derive deterministic consequences via:
 - Unit propagation on Δ_P and ∇;
 - Unfounded sets $U \subseteq \text{atom}(P)$
- Note that U is unfounded if $EB_P(U) \subseteq A^F$
 - Note: For any $a \in U$, we have $(\lambda(a, U) \setminus \{Ta\}) \subseteq A$
- An “interesting” unfounded set U satisfies:
 \[
 \emptyset \subset U \subseteq (\text{atom}(P) \setminus A^F)
 \]
- Wrt a fixpoint of unit propagation, such an unfounded set contains some loop of P
 - Note: Tight programs do not yield “interesting” unfounded sets!
Outline of NogoodPropagation

- Derive deterministic consequences via:
 - Unit propagation on Δ_P and ∇;
 - Unfounded sets $U \subseteq \text{atom}(P)$
- Note that U is unfounded if $EB_P(U) \subseteq A^F$
 - Note: For any $a \in U$, we have $(\lambda(a, U) \setminus \{Ta\}) \subseteq A$
- An “interesting” unfounded set U satisfies:
 $$\emptyset \subset U \subseteq (\text{atom}(P) \setminus A^F)$$
- Wrt a fixpoint of unit propagation,
 such an unfounded set contains some loop of P
 - Note: Tight programs do not yield “interesting” unfounded sets!
- Given an unfounded set U and some $a \in U$, adding $\lambda(a, U)$ to ∇ triggers a conflict or further derivations by unit propagation
 - Note: Add loop nogoods atom by atom to eventually falsify all $a \in U$
Algorithm 2: NogoodPropagation

\textbf{Input}: A normal program P, a set ∇ of nogoods, and an assignment A.

\textbf{Output}: An extended assignment and set of nogoods.

$U := \emptyset$ // unfounded set

\textbf{loop}

\textbf{repeat}

\hspace{1em} \textbf{if} $\delta \subseteq A$ \textbf{for some} $\delta \in \Delta_P \cup \nabla$ \textbf{then return} (A, ∇) // conflict

\hspace{1em} $\Sigma := \{\delta \in \Delta_P \cup \nabla \mid \delta \setminus A = \{\sigma\}, \sigma /\in A\}$ // unit-resulting nogoods

\hspace{2em} \textbf{if} $\Sigma \neq \emptyset$ \textbf{then let} $\sigma \in \delta \setminus A$ \textbf{for some} $\delta \in \Sigma$ \textbf{in}

\hspace{3em} $dlevel(\sigma) := \max\{dlevel(\rho) \mid \rho \in \delta \setminus \{\sigma\}\} \cup \{0\}$

\hspace{3em} $A := A \circ \sigma$

\hspace{1em} \textbf{until} $\Sigma = \emptyset$

\hspace{1em} \textbf{if} $\text{loop}(P) = \emptyset$ \textbf{then return} (A, ∇)

\hspace{1em} $U := U \setminus A^F$

\hspace{2em} \textbf{if} $U = \emptyset$ \textbf{then} $U := \text{UnfoundedSet}(P, A)$

\hspace{1em} \textbf{if} $U = \emptyset$ \textbf{then return} (A, ∇) // no unfounded set $\emptyset \subset U \subseteq \text{atom}(P) \setminus A^F$

\hspace{2em} \textbf{let} $a \in U$ \textbf{in}

\hspace{3em} $\nabla := \nabla \cup \{Ta\} \cup \{FB \mid B \in
\text{EB}_P(U)\}$ // record loop nogood
Requirements for UnfoundedSet

- Implementations of UnfoundedSet must guarantee the following for a result U
 1. $U \subseteq (\text{atom}(P) \setminus A^F)$
 2. $EB_p(U) \subseteq A^F$
 3. $U = \emptyset$ iff there is no nonempty unfounded subset of $(\text{atom}(P) \setminus A^F)$
Requirements for UnfoundedSet

- Implementations of UnfoundedSet must guarantee the following for a result U
 1. \(U \subseteq (\text{atom}(P) \setminus A^F) \)
 2. \(E_{B_P}(U) \subseteq A^F \)
 3. \(U = \emptyset \) iff there is no nonempty unfounded subset of \((\text{atom}(P) \setminus A^F)\)

- Beyond that, there are various alternatives, such as:
 - Calculating the greatest unfounded set
 - Calculating unfounded sets within strongly connected components of the positive atom dependency graph of P
 - Usually, the latter option is implemented in ASP solvers
Example: NogoodPropagation

Consider

\[P = \begin{cases}
 x \leftarrow \neg y & u \leftarrow x, y \\
 y \leftarrow \neg x & v \leftarrow x \\
 u \leftarrow v & v \leftarrow u, y \\
\end{cases} \]

<table>
<thead>
<tr>
<th>dl</th>
<th>(\sigma_d)</th>
<th>(\overline{\sigma})</th>
<th>(\delta)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(Tu)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>(F{\neg x, \neg y})</td>
<td>(F_w)</td>
<td>(Tw, F{\neg x, \neg y}) = (\delta(w))</td>
</tr>
<tr>
<td>3</td>
<td>(F{\neg y})</td>
<td>(F_x)</td>
<td>(Tx, F{\neg y}) = (\delta(x))</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(F{x})</td>
<td>(T{x}, Fx) \in (\Delta({x}))</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(F{x, y})</td>
<td>(T{x, y}, Fx) \in (\Delta({x, y}))</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(T{\neg x})</td>
<td>(F{\neg x}, Fx) = (\delta({\neg x}))</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(Ty)</td>
<td>(F{\neg y}, Fy) = (\delta({\neg y}))</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(T{v})</td>
<td>(Tu, F{x, y}, F{v}) = (\delta(u))</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(T{u, y})</td>
<td>(F{u, y}, Tu, Ty) = (\delta({u, y}))</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(Tv)</td>
<td>(Fv, T{u, y}) \in (\Delta(v))</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(Tw, F{x, y} = \lambda(u, {u, v}))</td>
</tr>
</tbody>
</table>
Outline

1. Motivation
2. Boolean constraints
3. Nogoods from logic programs
 - Nogoods from program completion
 - Nogoods from loop formulas
4. Conflict-driven nogood learning
 - CDNL-ASP Algorithm
 - Nogood Propagation
 - Conflict Analysis
Outline of Conflict Analysis

- Conflict analysis is triggered whenever some nogood $\delta \in \Delta_P \cup \nabla$ becomes violated, viz. $\delta \subseteq A$, at a decision level $dl > 0$
 - Note that all but the first literal assigned at dl have been unit-resulting for nogoods $\varepsilon \in \Delta_P \cup \nabla$
 - If $\sigma \in \delta$ has been unit-resulting for ε, we obtain a new violated nogood by resolving δ and ε as follows:

$$\left(\delta \setminus \{\sigma\} \right) \cup \left(\varepsilon \setminus \{\sigma\} \right)$$
Outline of Conflict Analysis

- Conflict analysis is triggered whenever some nogood $\delta \in \Delta_P \cup \nabla$ becomes violated, viz. $\delta \subseteq A$, at a decision level $dl > 0$
 - Note that all but the first literal assigned at dl have been unit-resulting for nogoods $\varepsilon \in \Delta_P \cup \nabla$
 - If $\sigma \in \delta$ has been unit-resulting for ε, we obtain a new violated nogood by resolving δ and ε as follows:
 $$ (\delta \setminus \{\sigma\}) \cup (\varepsilon \setminus \{\overline{\sigma}\}) $$

- Resolution is directed by resolving first over the literal $\sigma \in \delta$ derived last, viz. $(\delta \setminus A[\sigma]) = \{\sigma\}$
 - Iterated resolution progresses in inverse order of assignment
Outline of Conflict Analysis

- Conflict analysis is triggered whenever some nogood $\delta \in \Delta_P \cup \nabla$ becomes violated, viz. $\delta \subseteq A$, at a decision level $dl > 0$
 - Note that all but the first literal assigned at dl have been unit-resulting for nogoods $\varepsilon \in \Delta_P \cup \nabla$
 - If $\sigma \in \delta$ has been unit-resulting for ε, we obtain a new violated nogood by resolving δ and ε as follows:
 $$(\delta \setminus \{\sigma\}) \cup (\varepsilon \setminus \{\bar{\sigma}\})$$

- Resolution is directed by resolving first over the literal $\sigma \in \delta$ derived last, viz. $(\delta \setminus A[\sigma]) = \{\sigma\}$
 - Iterated resolution progresses in inverse order of assignment
- Iterated resolution stops as soon as it generates a nogood δ containing exactly one literal σ assigned at decision level dl
 - This literal σ is called First Unique Implication Point (First-UIP)
 - All literals in $(\delta \setminus \{\sigma\})$ are assigned at decision levels smaller than dl
Algorithm 3: ConflictAnalysis

Input : A non-empty violated nogood δ, a normal program P, a set ∇ of nogoods, and an assignment A.

Output : A derived nogood and a decision level.

loop
 let $\sigma \in \delta$ such that $\delta \setminus A[\sigma] = \{\sigma\}$ in
 $k := \max\{dlevel(\rho) \mid \rho \in \delta \setminus \{\sigma\}\} \cup \{0\}$
 if $k = dlevel(\sigma)$ then
 let $\varepsilon \in \Delta_P \cup \nabla$ such that $\varepsilon \setminus A[\sigma] = \{\overline{\sigma}\}$ in
 $\delta := (\delta \setminus \{\sigma\}) \cup (\varepsilon \setminus \overline{\sigma})$ // resolution
 else return (δ, k)
Example: ConflictAnalysis

Consider

\[P = \left\{ \begin{array}{l}
x \leftarrow \sim y \\
y \leftarrow \sim x \\
u \leftarrow x, y \\
v \leftarrow y \\
w \leftarrow \sim x, \sim y \\
u \leftarrow v \\
v \leftarrow u, y
\end{array} \right\} \]

<table>
<thead>
<tr>
<th>dl</th>
<th>(\sigma_d)</th>
<th>(\bar{\sigma})</th>
<th>(\delta)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(Tu)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>(F{\sim x, \sim y})</td>
<td>(Tw, F{\sim x, \sim y}) = (\delta(w))</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>(F{\sim y})</td>
<td>(Tx, F{\sim y}) = (\delta(x))</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(F{x})</td>
<td>(T{x}, Fx \in \Delta({x}))</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(F{x, y})</td>
<td>(T{x, y}, Fx \in \Delta({x, y}))</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(T{\sim x})</td>
<td>(F{\sim x}, Fx = \delta({\sim x}))</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(T{y})</td>
<td>(F{\sim y}, Fy \in \delta({\sim y}))</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(T{v})</td>
<td>(Tu, F{x, y}, F{v}) = (\delta(u))</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(T{u, y})</td>
<td>(F{u, y}, Tu, Ty) = (\delta({u, y}))</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(Tv)</td>
<td>(Fv, T{u, y}) \in (\Delta(v))</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(T{u, F{x} })</td>
<td>(F{x, y}) = (\lambda(u, {u, v}))</td>
<td></td>
</tr>
</tbody>
</table>

TU Dresden, 2 July 2018
Example: ConflictAnalysis

Consider

\[P = \left\{ \begin{array}{l}
x \leftarrow \sim y \\
u \leftarrow x, y \\
v \leftarrow x \\
w \leftarrow \sim x, \sim y \\
y \leftarrow \sim x \\
u \leftarrow v \\
v \leftarrow u, y \\
\end{array} \right\} \]

<table>
<thead>
<tr>
<th>dl</th>
<th>\sigma_d</th>
<th>\overline{\sigma}</th>
<th>\delta</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>\text{T}_u</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>\text{F}{\sim x, \sim y}</td>
<td>\text{F}_w</td>
<td>{\text{T}_w, \text{F}{\sim x, \sim y}} = \delta(w)</td>
</tr>
<tr>
<td>3</td>
<td>\text{F}{\sim y}</td>
<td>\text{F}_x</td>
<td>{\text{T}_x, \text{F}{\sim y}} = \delta(x)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>\text{F}{x}</td>
<td>{\text{T}{x}, \text{F}_x} \in \Delta({x})</td>
</tr>
<tr>
<td></td>
<td></td>
<td>\text{F}{x, y}</td>
<td>{\text{T}{x, y}, \text{F}_x} \in \Delta({x, y})</td>
</tr>
<tr>
<td></td>
<td></td>
<td>\text{T}{\sim x}</td>
<td>{\text{F}{\sim x}, \text{F}_x} = \delta({\sim x})</td>
</tr>
<tr>
<td></td>
<td></td>
<td>\text{T}_y</td>
<td>{\text{F}{\sim y}, \text{F}_y} = \delta({\sim y})</td>
</tr>
<tr>
<td></td>
<td></td>
<td>\text{T}{v}</td>
<td>{\text{T}_u, \text{F}{x, y}, \text{F}{v}} = \delta(u)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>\text{T}{u, y}</td>
<td>{\text{F}_v, \text{T}{u, y}} \in \Delta(v)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>\text{T}_v</td>
<td>{\text{T}_u, \text{F}{x}, \text{F}{x, y}} = \lambda(u, {u, v})</td>
</tr>
</tbody>
</table>

TU Dresden, 2 July 2018
Example: ConflictAnalysis

Consider

\[
P = \{ x \leftarrow \sim y, u \leftarrow x, y, v \leftarrow x, w \leftarrow \sim x, \sim y \}
\]

<table>
<thead>
<tr>
<th>dl</th>
<th>(\sigma_d)</th>
<th>(\bar{\sigma})</th>
<th>(\delta)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(T_u)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>(F{\sim x, \sim y})</td>
<td>(F_w)</td>
<td>({T_w, F{\sim x, \sim y}} = \delta(w))</td>
</tr>
<tr>
<td>3</td>
<td>(F{\sim y})</td>
<td>(F_x)</td>
<td>({T_x, F{\sim y}} = \delta(x))</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(F{x})</td>
<td>({T{x}, Fx} \in \Delta({x}))</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(F{x, y})</td>
<td>({T{x, y}, Fx} \in \Delta({x, y}))</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(T{\sim x})</td>
<td>({F{\sim x}, Fx} = \delta({\sim x}))</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(T_y)</td>
<td>({F{\sim y}, Fy} = \delta({\sim y}))</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(T{v})</td>
<td>({T_u, F{x, y}, F{v}} = \delta(u))</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(T{u, y})</td>
<td>({F{u, y}, T_u, T_y} = \delta({u, y}))</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(T_v)</td>
<td>({F_v, T{u, y}} \in \Delta(v))</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>({T_u, F{x}, F{x, y}} = \lambda(u, {u, v}))</td>
</tr>
</tbody>
</table>

TU Dresden, 2 July 2018 Deduction Systems slide 75 of 86
Example: ConflictAnalysis

Consider

\[P = \{ x \leftarrow \sim y, \ u \leftarrow x, y, \ v \leftarrow x, \ w \leftarrow \sim x, \sim y \} \]

<table>
<thead>
<tr>
<th>dl</th>
<th>(\sigma_d)</th>
<th>(\bar{\sigma})</th>
<th>(\delta)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(Tu)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>(F{\sim x, \sim y})</td>
<td>(F_w)</td>
<td>({Tw, F{\sim x, \sim y}} = \delta(w))</td>
</tr>
<tr>
<td>3</td>
<td>(F{\sim y})</td>
<td>(F_x)</td>
<td>({Tx, F{\sim y}} = \delta(x))</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(F{x})</td>
<td>({T{x}, Fx} \in \Delta({x}))</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(F{x, y})</td>
<td>({T{x, y}, Fx} \in \Delta({x, y}))</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(T{\sim x})</td>
<td>({F{\sim x}, Fx} = \delta({\sim x}))</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(T_y)</td>
<td>({F{\sim y}, Fy} = \delta({\sim y}))</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(T{v})</td>
<td>({Tu, F{x, y}, F{v}} = \delta(u))</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(T{u, y})</td>
<td>({F{u, y}, Tu, Ty} = \delta({u, y}))</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(T_v)</td>
<td>({Fv, T{u, y}} \in \Delta(v))</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>({Tu, F{x}, F{x, y}} = \lambda(u, {u, v}) \times)</td>
</tr>
</tbody>
</table>
Example: ConflictAnalysis

Consider

\[
P = \left\{ \begin{array}{l}
x \leftarrow \sim y \\
y \leftarrow \sim x \\
u \leftarrow x, y \\
v \leftarrow x \\
w \leftarrow \sim x, \sim y
\end{array} \right. \}
\]

<table>
<thead>
<tr>
<th>dl</th>
<th>σ_d</th>
<th>$\bar{\sigma}$</th>
<th>δ</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Tu</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>$F{\sim x, \sim y}$</td>
<td>Fw</td>
<td>${Tw, F{\sim x, \sim y}} = \delta(w)$</td>
</tr>
<tr>
<td>3</td>
<td>$F{\sim y}$</td>
<td>Fx</td>
<td>${Tx, F{\sim y}} = \delta(x)$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$F {x}$</td>
<td>${T{x}, Fx} \in \Delta({x})$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$F{x, y}$</td>
<td>${T{x, y}, Fx} \in \Delta({x, y})$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$T{\sim x}$</td>
<td>${F{\sim x}, Fx} = \delta({\sim x})$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ty</td>
<td>${F{\sim y}, Fy} = \delta({\sim y})$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$T{v}$</td>
<td>${Tu, F{x, y}, F{v}} = \delta(u)$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$T{u, y}$</td>
<td>${F{u, y}, Tu, Ty} = \delta({u, y})$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tv</td>
<td>${Fv, T{u, y}} \in \Delta(v)$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>${Tu, F{x}, F{x, y}} = \lambda(u, {u, v}) \times$</td>
<td></td>
</tr>
</tbody>
</table>
Example: ConflictAnalysis

Consider

\[P = \left\{ \begin{array}{l}
 x \leftarrow \sim y \\
 u \leftarrow x, y \\
 v \leftarrow x \\
 w \leftarrow \sim x, \sim y \\
 y \leftarrow \sim x \\
 u \leftarrow v \\
 v \leftarrow u, y
\end{array} \right\} \]

<table>
<thead>
<tr>
<th>dl</th>
<th>(\sigma_d)</th>
<th>(\bar{\sigma})</th>
<th>(\delta)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(Tu)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>(F{\sim x, \sim y})</td>
<td>(F_w)</td>
<td>({ Tw, F{\sim x, \sim y} } = \delta(w))</td>
</tr>
<tr>
<td>3</td>
<td>(F{\sim y})</td>
<td>(F_x)</td>
<td>({ Tx, F{\sim y} } = \delta(x))</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(F{x})</td>
<td>({ T{x}, Fx } \in \Delta({x}))</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(F{x, y})</td>
<td>({ T{x, y}, Fx } \in \Delta({x, y}))</td>
</tr>
<tr>
<td></td>
<td>(T{\sim x})</td>
<td>(F{\sim x}, Fx)</td>
<td>(\delta({\sim x}))</td>
</tr>
<tr>
<td></td>
<td>(T{y})</td>
<td>(F{\sim y}, Fy)</td>
<td>(\delta({\sim y}))</td>
</tr>
<tr>
<td></td>
<td>(T{v})</td>
<td>({ Tu, F{x, y}, F{v} } = \delta(u))</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(T{u, y})</td>
<td>(F{u, y}, Tu, Ty)</td>
<td>(\delta({u, y}))</td>
</tr>
<tr>
<td></td>
<td>(T_v)</td>
<td>(F_v, T{u, y})</td>
<td>(\in \Delta(v))</td>
</tr>
<tr>
<td></td>
<td></td>
<td>({ Tu, F{x}, F{x, y} } = \lambda(u, {u, v}))</td>
<td>(\times)</td>
</tr>
</tbody>
</table>
Example: ConflictAnalysis

Consider

\[
P = \{ \begin{align*}
& x \leftarrow \sim y & & u \leftarrow x, y & & v \leftarrow x & & w \leftarrow \sim x, \sim y \\
& y \leftarrow \sim x & & u \leftarrow v & & v \leftarrow u, y
\end{align*} \}
\]

<table>
<thead>
<tr>
<th>(d_{\ell})</th>
<th>(\sigma_d)</th>
<th>(\bar{\sigma})</th>
<th>(\delta)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (Tu)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 (F{\sim x, \sim y})</td>
<td>(F_w)</td>
<td>({Tw, F{\sim x, \sim y}} = \delta(w))</td>
<td></td>
</tr>
<tr>
<td>3 (F{\sim y})</td>
<td>(Fx)</td>
<td>({Tx, F{\sim y}} = \delta(x))</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(F{x})</td>
<td>({T{x}, Fx} \in \Delta({x}))</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(F{x, y})</td>
<td>({T{x, y}, Fx} \in \Delta({x, y}))</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(T{\sim x})</td>
<td>({F{\sim x}, Fx} = \delta({\sim x}))</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(Ty)</td>
<td>({F{\sim y}, Fy} = \delta({\sim y}))</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(T{v})</td>
<td>({Tu, F{x, y}, F{v}} = \delta(u))</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(T{u, y})</td>
<td>({F{u, y}, Tu, Ty} = \delta({u, y}))</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(Tv)</td>
<td>({Tv, T{u, y}} \in \Delta(v))</td>
<td></td>
</tr>
<tr>
<td></td>
<td>({Tu, F{x}, F{x, y}} = \lambda(u, {u, v}))</td>
<td>(\times)</td>
<td></td>
</tr>
</tbody>
</table>
Example: ConflictAnalysis

Consider

\[P = \begin{cases}
 x \leftarrow \neg y & u \leftarrow x, y & v \leftarrow x & w \leftarrow \neg x, \neg y \\
 y \leftarrow \neg x & u \leftarrow v & v \leftarrow u, y
\end{cases} \]

<table>
<thead>
<tr>
<th>dl</th>
<th>(\sigma_d)</th>
<th>(\bar{\sigma})</th>
<th>(\delta)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(Tu)</td>
<td></td>
<td>(\delta)</td>
</tr>
<tr>
<td>2</td>
<td>(F{\neg x, \neg y})</td>
<td>(F_w)</td>
<td>({Tw, F{\neg x, \neg y}} = \delta(w))</td>
</tr>
<tr>
<td>3</td>
<td>(F{\neg y})</td>
<td>(F_x)</td>
<td>({Tx, F{\neg y}} = \delta(x))</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(F{x})</td>
<td>({T{x}, Fx} \in \Delta({x}))</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(F{x, y})</td>
<td>({T{x, y}, Fx} \in \Delta({x, y}))</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(T{\neg x})</td>
<td>({F{\neg x}, Fx} = \delta({\neg x}))</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(T_y)</td>
<td>({F{\neg y}, Fy} = \delta({\neg y}))</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(T{v})</td>
<td>({Tu, F{x, y}, F{v}} = \delta(u))</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(T{u, y})</td>
<td>({F{u, y}, Tu, Ty} = \delta({u, y}))</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(T_v)</td>
<td>({Fv, T{u, y}} \in \Delta(v))</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>({Tu, F{x}, F{x, y}} = \lambda(u, {u, v}))</td>
</tr>
</tbody>
</table>
Example: ConflictAnalysis

Consider

\[
P = \begin{cases}
 x \leftarrow \sim y & u \leftarrow x, y & v \leftarrow x & w \leftarrow \sim x, \sim y \\
 y \leftarrow \sim x & u \leftarrow v & v \leftarrow u, y
\end{cases}
\]

<table>
<thead>
<tr>
<th>dl</th>
<th>(\sigma_d)</th>
<th>(\bar{\sigma})</th>
<th>(\delta)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(Tu)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>(F{\sim x, \sim y})</td>
<td>(Fw)</td>
<td>({Tw, F{\sim x, \sim y}} = \delta(w))</td>
</tr>
<tr>
<td>3</td>
<td>(F{\sim y})</td>
<td>(Fx)</td>
<td>({Tx, F{\sim y}} = \delta(x))</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(F{x})</td>
<td>({T{x}, Fx} \in \Delta({x}))</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(F{x, y})</td>
<td>({T{x, y}, Fx} \in \Delta({x, y}))</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(T{\sim x})</td>
<td>({F{\sim x}, Fx} = \delta({\sim x}))</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(Ty)</td>
<td>({F{\sim y}, Fy} = \delta({\sim y}))</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(Tv)</td>
<td>({Tu, F{x, y}, F{v}} = \delta(u))</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(T{u, y})</td>
<td>({F{u, y}, Tu, Ty} = \delta({u, y}))</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(Tv)</td>
<td>({Fv, T{u, y}} \in \Delta(v))</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>({Tu, F{x}, F{x, y}} = \lambda(u, {u, v}))</td>
</tr>
</tbody>
</table>
Example: ConflictAnalysis

Consider

\[P = \left\{ \begin{array}{l}
 x \leftarrow \sim y \\
 u \leftarrow x, y \\
 v \leftarrow x \\
 w \leftarrow \sim x, \sim y \\
 y \leftarrow \sim x \\
 u \leftarrow v \\
 v \leftarrow u, y
\end{array} \right\} \]

<table>
<thead>
<tr>
<th>dl</th>
<th>(\sigma_d)</th>
<th>(\bar{\sigma})</th>
<th>(\delta)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(T_u)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| 2 | \(F\{\sim x, \sim y\} \) | \(F_w \) | \(\{T_w, F\{\sim x, \sim y\}\} = \delta(w) \)
| 3 | \(F\{\sim y\} \) | \(F_{x} \) | \(\{T_{x}, F\{\sim y\}\} = \delta(x) \)
| | \(F\{x\} \) | \(\{T\{x\}, F_{x}\} \in \Delta(\{x\}) \)
| | \(F\{x, y\} \) | \(\{T\{x, y\}, F_{x}\} \in \Delta(\{x, y\}) \)
| | \(T\{\sim x\} \) | \(\{F\{\sim x\}, F_{x}\} = \delta(\{\sim x\}) \)
| | \(T\{y\} \) | \(\{F\{\sim y\}, F_{y}\} = \delta(\{\sim y\}) \)
| | \(T\{v\} \) | \(\{T_{u}, F\{x, y\}, F\{v\}\} = \delta(u) \)
| | \(T\{u, y\} \) | \(\{F\{u, y\}, T_{u}, T_{y}\} = \delta(\{u, y\}) \)
| | \(T_{v} \) | \(\{F_{v}, T\{u, y\}\} \in \Delta(\nu) \)
| | | \(\{T_{u}, F\{x\}, F\{x, y\}\} = \lambda(u, \{u, v\}) \) | \(\times \)
Remarks

- There always is a First-UIP at which conflict analysis terminates
 - In the worst, resolution stops at the heuristically chosen literal assigned at decision level \(dl \)
Remarks

- There always is a First-UIP at which conflict analysis terminates
 - In the worst, resolution stops at the heuristically chosen literal assigned at decision level dl
- The nogood δ containing First-UIP σ is violated by A, viz. $\delta \subseteq A$
- We have $k = \max(\{dl(\rho) \mid \rho \in \delta \setminus \{\sigma\} \cup \{0\}\}) < dl$
Remarks

- There always is a First-UIP at which conflict analysis terminates
 - In the worst, resolution stops at the heuristically chosen literal assigned at decision level dl
- The nogood δ containing First-UIP σ is violated by A, viz. $\delta \subseteq A$
- We have $k = \max(\{dl(\rho) \mid \rho \in \delta \setminus \{\sigma\} \cup \{0\}\}) < dl$
 - After recording δ in ∇ and backjumping to decision level k,
 $\overline{\sigma}$ is unit-resulting for δ !
 - Such a nogood δ is called asserting
Remarks

- There always is a First-UIP at which conflict analysis terminates
 - In the worst, resolution stops at the heuristically chosen literal assigned at decision level dl
- The nogood δ containing First-UIP σ is violated by A, viz. $\delta \subseteq A$
- We have $k = \max(\{dl(\rho) \mid \rho \in \delta \setminus \{\sigma\}\} \cup \{0\}) < dl$
 - After recording δ in ∇ and backjumping to decision level k,
 $\overline{\sigma}$ is unit-resulting for δ!
 - Such a nogood δ is called asserting
- Asserting nogoods direct conflict-driven search into a different region of the search space than traversed before,
 without explicitly flipping any heuristically chosen literal!