Exercise 14.1. Let \(G = \langle V, E \rangle \) be an undirected graph. A cut \(C = \langle A, B \rangle \) of \(G \) is a partition \(A \cup B = V \) of \(V \) such that there is an edge in \(G \) from a vertex \(a \in A \) to a vertex \(b \in B \). The cut-set of \(C \) is \(S := \{ \{ a, b \} \in E \mid a \in A, b \in B \} \). The normalised cut value of a cut \(C = \langle A, B \rangle \) is

\[
\frac{|\{ \{ a, b \} \in E \mid a \in A, b \in B \}|}{|\{ \{ a, v \} \in E \mid a \in A, v \in V \}|} + \frac{|\{ \{ a, b \} \in E \mid a \in A, b \in B \}|}{|\{ \{ b, v \} \in E \mid b \in B, v \in V \}|},
\]

i.e., the number of endpoints of edges in the cut-set divided by the number of vertices that have an edge with an endpoint in \(A \) or \(B \).

Find the minimal cuts (i) with respect to the cardinality of the cut-set, and (ii) with respect to the normalised cut value of the following graph. Which of these cuts best describes the community structure of the graph?

![Graph](image)

Exercise 14.2. Let \(G = \langle V, E \rangle \) be an undirected graph. A bi-clique in \(G \) consists of two disjoint, nonempty sets \(A, B \subseteq V \) such that the induced subgraph of \(A \cup B \) in \(G \) is a complete bipartite graph, i.e., \(\{ \{ a, b \} \mid a \in A, b \in B \} \subseteq E \), and no two vertices in \(A \) (and \(B \), respectively) are adjacent.

Find all bi-cliques in the following graph. Which bi-cliques are maximal?

![Graph](image)
Exercise 14.3. Let $G = \langle V, E \rangle$ be a directed graph. For two vertices $v, w \in V$, the *distance* $d(v, w)$ is the length of the shortest directed path from v to w (or ∞ if there is no such path). For a set $S \subseteq V$ of vertices, the *reachable set* is $R(S) := \{ v \in V \mid \exists w \in S. d(w, v) < \infty \}$. A *point base* of G is a minimal set $B \subseteq V$ such that $R(B) = V$.

Find a point base for the following graph. How does the point base change when adding the edge $\langle B, E \rangle$?

![Graph Diagram]

Exercise 14.4. Write a program that takes as input

- a directed graph in METIS format
- and a dictionary file in the format of Exercise 12.4 mapping vertex IDs to labels,

and uses the Girvan-Newman algorithm to print out all communities on level k of the hierarchical clustering of the input graph.

Modify the program from Exercise 12.4 to extract the subgraph from Wikidata that consists of all edges of the form $t \to s$, where t has a P40 (“child”), a P25 (“mother”), or a P22 (“father”) statement with value s, and also occurs as the value of a P35 (“Head of State”) or P6 (“Head of Government”) statement. Use your program to print out the communities on level 5 of the hierarchical clustering of this subgraph.

Hint: NetworkX\(^1\) provides an implementation of the GN algorithm.\(^2\)

\(^1\)https://networkx.github.io/

\(^2\)https://networkx.github.io/documentation/latest/reference/algorithms/generated/networkx.algorithms.community.centrality.girvan_newman.html