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Abstract

Description logics (DLs) are a successful family of logic-based knowledge represen-
tation formalisms that can be used to represent the terminological knowledge of an
application domain in a structured and formally well-founded way. DL systems pro-
vide their users with inference procedures that allow to reason about the represented
knowledge. Standard inference problems (such as the subsumption and the instance
problem) are now well-understood. Their computational properties (such as decid-
ability and complexity) have been investigated in detail, and modern DL systems
are equipped with highly optimized implementations of these inference procedures,
which—in spite of their high worst-case complexity—perform quite well in practice.

In applications of DL systems it has turned out that building and maintaining
large DL knowledge bases can be further facilitated by procedures for other, non-
standard inference problem, such as computing the least common subsumer and the
most specific concept, and rewriting and matching of concepts. While the research
concerning these non-standard inferences is not as mature as the one for the standard
inferences, it has now reached a point where it makes sense to motivate these inferences
within a uniform application framework, give an overview of the results obtained so
far, describe the remaining open problems, and give perspectives for future research
in this direction.

1 Introduction

Description logics (DLs) [12] are a family of knowledge representation languages which can
be used to represent the terminological knowledge of an application domain in a structured
and formally well-understood way. The name description logics is motivated by the fact
that, on the one hand, the important notions of the domain are described by concept
descriptions, i.e., expressions that are built from atomic concepts (unary predicates) and
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atomic roles (binary predicates) using the concept and role constructors provided by the
particular DL. For example, the concept of “a man that is married to a doctor, and has
only happy children” can be expressed using the concept description

Man u ∃married.Doctor u ∀child.Happy.

On the other hand, DLs differ from their predecessors, such as semantic networks and
frames [84, 79], in that they are equipped with a formal, logic-based semantics, which can,
e.g., be given by a translation into first-order predicate logic. For example, the above
concept description can be translated into the following first-order formula (with one free
variable x):

Man(x) ∧ ∃y.(married(x, y) ∧ Doctor(y)) ∧ ∀y.(child(x, y) → Happy(y)).

In addition to the formalism for describing concepts, DLs usually also provide their users
with means for describing individuals by stating to which concepts they belong and in
which role relationships they participate. For example, the assertions

Man(JOHN), child(JOHN, MARY), Happy(MARY)

state that the individual John has a child Mary, who is happy.
Knowledge representation systems based on description logics (DL systems or DL rea-

soners) [95, 81] provide their users with various inference capabilities that deduce implicit
knowledge from the explicitly represented knowledge. Standard inference services are sub-
sumption and instance checking. Subsumption allows the user to determine subconcept-
superconcept relationships, and hence, compute a subconcept-superconcept hierarchy: C

is subsumed by D iff all instances of C are also instances of D, i.e., the first description is
always interpreted as a subset of the second description. Instance checking asks whether
a given individual necessarily belongs to a given concept, i.e., whether this instance rela-
tionship logically follows from the descriptions of the concept and of the individual.

In order to ensure a reasonable and predictable behaviour of a DL reasoner, these
inference problems should at least be decidable for the DL employed by the reasoner, and
preferably of low complexity. Consequently, the expressive power of the DL in question
must be restricted in an appropriate way. If the imposed restrictions are too severe,
however, then the important notions of the application domain can no longer be expressed.
Investigating this trade-off between the expressivity of DLs and the complexity of their
inference problems has been one of the most important issues of DL research in the 1990ies.
As a consequence of this research, the complexity of reasoning in various DLs of different
expressive power is now well-investigated (see [49] for an overview of these complexity
results). In addition, there are highly optimized implementations of reasoners for very
expressive DLs [61, 54, 62], which—despite their high worst-case complexity—behave very
well in practice [60, 53].
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DLs have been applied in many domains, such as medical informatics, software engi-
neering, configuration of technical systems, natural language processing, databases, and
web-based information systems (see Part III of [12] for details on these and other appli-
cations). A recent success story is the use of DLs as ontology languages [15, 16] for the
Semantic Web [33]. In particular, the W3C recommended ontology web language OWL
[64] is based on an expressive description logic [67, 66].

Editors—such as OilEd [32] and the OWL plug-in of Protègè [69]—supporting the
design of ontologies in various application domains usually allow their users to access a DL
reasoner, which realizes the aforementioned standard inferences such as subsumption and
instance checking. Reasoning is not only useful when working with “finished” ontologies,
it can also support the ontology engineer while building an ontology, by pointing out
inconsistencies and unwanted consequences. The ontology engineer can thus use reasoning
to check whether the definition of a concept or the description of an individual makes sense.

However, these standard DL inferences—subsumption and instance checking—provide
only little support for actually coming up with a first version of the definition of a concept.
The non-standard inferences considered in this paper were introduced to overcome this
deficit, by allowing the user to construct new knowledge from the existing one. Our own
motivation for investigating these novel inferences comes from an application in chemical
process engineering where a knowledge base has been built by different knowledge engineers
over a rather long period of time [87, 71, 80, 44, 35, 77, 94].

The goal of this paper is (i) to motivate non-standard inferences by means of a simple
application scenario, (ii) to provide an overview of the results that have been obtained
for non-standard inferences so far, and (iii) to explain the main techniques employed for
solving these novel inference problems. In order to be able to describe the latter in detail,
the exposition of the techniques is mainly restricted to the DL ALE . However, we also
provide references to results for other DLs.

Structure of the paper. In Section 2, we introduce typical DL constructors and the
most important standard inference problems. In addition, we give a brief review of the
different approaches for solving these inference problems, and of their complexity in dif-
ferent DLs. In Section 3, we first motivate the need for non-standard inferences in in a
typical application scenario, and then formally define the most important non-standard
inferences in description logics. Then, we briefly introduces the techniques used to solve
these problems. Since these techniques depend on a syntactic characterization of the sub-
sumption problem, Section 3 is followed by a section that describes such a characterization
for the DL ALE , which we us as a prototypical example (Section 4). The next four sections
consider the four most important non-standard inference problems: computing the least
common subsumer and the most specific concept, rewriting, and matching. Related non-
standard inferences are briefly discussed in the respective sections as well. We explain the
results on these four non-standard inferences in ALE in detail, whereas results for other
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Name Syntax Semantics

top-concept > ∆I

bottom-concept ⊥ ∅
negation ¬C ∆I \ CI

atomic negation ¬A ∆I \ AI

conjunction C u D CI ∩ DI

disjunction C t D CI ∪ DI

value restriction ∀r.C {x ∈ ∆I | ∀y : (x, y) ∈ rI → y ∈ CI}
existential restriction ∃r.C {x ∈ ∆I | ∃y : (x, y) ∈ rI ∧ y ∈ CI}
at-least restriction ≥n r {x ∈ ∆I | ]{y | (x, y) ∈ rI} ≥ n}
at-most restriction ≤n r {x ∈ ∆I | ]{y | (x, y) ∈ rI} ≤ n}

concept definition A ≡ C AI = CI

concept assertion C(a) aI ∈ CI

role assertion r(a, b)) (aI , bI) ∈ rI

Table 1: Syntax and semantics of concept descriptions, definitions, and assertions.

DLs are reviewed only briefly. Finally, Section 9 summarizes the results on non-standard
inferences obtained so far, and gives perspectives for further research.

2 Description Logics and Standard Inferences

In order to define concepts in a DL knowledge base, one starts with a set NC of concept
names (unary predicates) and a set NR of role names (binary predicates), and defines
more complex concept descriptions using the concept constructors provided by the con-
cept description language of the particular system. In this paper, we consider the DL
ALCN and some of its sublanguages. Concept descriptions of ALCN are built using the
constructors shown in the first part of Table 1. In this table, r stands for a role name, n for
a nonnegative integer, A for a concept name, and C, D for arbitrary concept descriptions.

A concept definition A ≡ C (as shown in the second part of Table 1) assigns a concept
name A to a complex description C. A finite set of such definitions is called a TBox
iff it is unambiguous, i.e., each name has at most one definition. The concept names
occurring on the left-hand side of a concept definition are called defined concepts, and the
others primitive. In many cases, one restricts the attention to acyclic TBoxes, where the
definition of a defined concept A cannot (directly or indirectly) refer to A itself.

A (concept or role) assertion is of the form shown in the last part of Table 1. Here,
a, b belong to an additional set NI of individual names. A finite set of such assertions is
called an ABox.

The sublanguages of ALCN that will be considered in this paper are shown in Table 2.

4



Symbol Syntax ALC ALEN ALE ALN EL FL0

> x x x x x x
⊥ x x x x

AL u x x x x x x
¬A x x x x
∀r.C x x x x x

C ¬C x

E ∃r.C x x x x

U C t D x

N (≤n r), (≥n r) x x

Table 2: The relevant sublanguages of ALCN .

The first column explains the naming scheme for the members of the AL-family.
The semantics of concept descriptions is defined in terms of an interpretation I =

(∆I , ·I). The domain ∆I of I is a non-empty set and the interpretation function ·I maps
each concept name A ∈ NC to a set AI ⊆ ∆I , each role name r ∈ NR to a binary relation
rI ⊆ ∆I×∆I , and each individual name a ∈ NI to an element aI ∈ ∆I . The extension of
·I to arbitrary concept descriptions is inductively defined, as shown in the third column
of Table 1. In the rows treating at-least and at-most number restrictions, ]M denotes the
cardinality of a set M .

The interpretation I is a model of the TBox T iff it satisfies all its concept definitions,
i.e., AI = CI for all A ≡ C in T , and it is a model of the ABox A iff it satisfies all its
assertions, i.e., aI ∈ CI for all concept assertions C(a) in A and (aI , bI) ∈ rI for all role
assertions r(a, b) in A.

Based on this semantics, we can now formally introduce the standard inference prob-
lems in description logics.

Definition 1 Let A be an ABox, T a TBox, C, D concept descriptions, and a an indi-
vidual name.

• C is satisfiable w.r.t. T iff there is a model I of T such that CI 6= ∅.

• D subsumes C w.r.t. T (C vT D) iff CI ⊆ DI for all models I of T .

• A is consistent w.r.t. T iff there is a model I of T that is also a model of A.

• a is an instance of C in A w.r.t. T (A, T |= C(a)) iff aI ∈ CI for all models I of
T and A.

In case the TBox T is empty, we omit the appendage “w.r.t. ∅.” In particular, we say
that D subsumes C and write this as C v D. Two concept descriptions are equivalent
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(C ≡ D) if they subsume each other (w.r.t. the empty TBox), i.e., if C v D and D v C.
We write C @ D to express that C v D but D 6v C.

If the DL under consideration allows for full negation (C), then subsumption and satis-
fiability are interreducable, and the same is true for the instance and the consistence prob-
lem. In addition, satisfiability (subsumption) can always be reduced to ABox-consistency
(instance checking). This follows from the following equivalences:

• C vT D iff C u ¬D is unsatisfiable w.r.t. T ;

• C is unsatisfiable w.r.t. T iff C vT ⊥;

• A, T |= C(a) iff A ∪ {¬C(a)} is inconsistent w.r.t. T ;

• A is inconsistent w.r.t. T iff A, T |= {⊥(a)} where a is an arbitrary individual name;

• C is satisfiable w.r.t. T iff {C(a)} is consistent where a is an arbitrary individual
name;

• C vT D iff {C(a)}, T |= D(a) where a is an arbitrary individual name.

If the TBox T is acyclic, then reasoning w.r.t. T can be reduced to reasoning w.r.t. the
empty TBox by expanding concept definitions, i.e., by replacing defined concept by their
definitions until all defined concepts have been replaced. This can, however, result in an
exponential blow-up of the problem [82].

Most of the early research on reasoning in DLs concentrated on the subsumption
problem for concept descriptions (i.e., w.r.t. the empty TBox). For the DLs introduced
above, the worst-case complexity of this problem is well-investigated. Subsumption in
ALCN , ALC, and ALEN is PSPACE-complete, whereas subsumption in ALE is NP-
complete. The subsumption problem for ALN , EL, and FL0 is polynomial (see [49]
for references and additional complexity results for other DLs). In the presence of an
acyclic TBox, the complexity of subsumption may increase, but not in all cases. For
example, subsumption w.r.t. an acyclic TBox in FL0 is coNP-complete [82], but it remains
polynomial in EL [8] and PSPACE-complete in ALCN [75]. Cyclic TBoxes may increase
the complexity of the subsumption problem even further (e.g., for FL0 to PSPACE [4,
68]), but again not in all cases (e.g., for EL, subsumption w.r.t. cyclic TBoxes remains
polynomial [8]). In most cases, the complexity of the instance problem is the same as
the complexity of the subsumption problem (e.g., in ALCN [57] and EL [7]), but in some
cases it may be harder (e.g., in ALE , where it is PSPACE-complete [51]).

The original KLone system [40] as well as its early successor systems (such as Back

[83], KRep [78], and Loom [76]) employed so-called structural subsumption algorithms,
which first normalise the concept descriptions, and then recursively compare the syntactic
structure of the normalised descriptions. These algorithms are usually very efficient (poly-
nomial), but they have the disadvantage that they are complete only for very inexpressive
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DLs, i.e., for more expressive DLs they cannot detect all the existing subsumption rela-
tionships. The DL ALN is an example of a DL where this structural approach yields a
polynomial-time subsumption algorithm (see [27] for a sketch of such an algorithm and
[38] for a detailed description of a structural subsumption algorithm for an extension of
ALN ). The syntactic characterization of subsumption in EL and ALE given in Section 4
can in principle also be used to obtain a structural subsumption algorithm for these DLs.
It should be noted, however, that in the case of ALE the normalization phase is not
polynomial. For EL, the normalization phase is void, but a naive top-down structural
comparison would not result in a deterministic polynomial-time algorithm. To obtain
a polynomial subsumption algorithm, one must use a dynamic programming approach,
i.e., work bottom-up. Overall, structural subsumption does not seem to be the right tool
for solving standard inferences for expressive DLs. However, as we will see, structural
subsumption plays an important role for solving non-standard inferences.

For expressive DLs (in particular, DLs allowing for disjunction and/or negation), for
which the structural approach does not lead to complete subsumption algorithms, tableau
algorithms have turned out to be useful: they are complete and often behave quite well
in practice. The first such algorithm was proposed by Schmidt-Schauß and Smolka [89]
for the DL ALC.1 It quickly turned out that this approach for deciding subsumption
can be extended to various other DLs [59, 58, 13, 2, 55, 46, 11, 28, 65, 67, 29] and also
to other inference problems such as the instance problem [56, 51, 57]. Early on, DL
researchers started to call the algorithms obtained this way “tableau-based algorithms”
since they observed that the original algorithm by Schmidt-Schauß and Smolka for ALC,
as well as subsequent algorithms for more expressive DLs, could be seen as specialisations
of the tableau calculus for first-order predicate logic (the main problem to solve was to
find a specialisation that always terminates, and thus yields a decision procedure). After
Schild [88] showed that ALC is a syntactic variant of multi-modal K, it turned out that
the algorithm by Schmidt-Schauß and Smolka was actually a re-invention of the tableau
algorithm for K known from modal logics [34].

The first DL systems employing tableau-based algorithms (Kris [14] and Crack [45])
demonstrated that (in spite of the high worst-case complexity of the underlying DL ALCN )
such algorithms can be implemented in a practical way. The complexity barrier has been
pushed even further back by the seminal system FaCT [61]. Although FaCT employs
the very expressive DL SHIQ, which has an EXPTIME-complete subsumption problem,
its highly optimized tableau-based subsumption algorithm outperforms the early systems
based on structural subsumption algorithms and Kris by several orders of magnitude
[63]. The equally well-performing system Racer [54] also provides for a highly-optimized
implementation of the ABox-consistency and instance test for an extension of SHIQ.

1Actually, at that time the authors were not aware of the close connection between their rule-based
algorithm working on constraint systems and tableau procedures for modal and first-order predicate logics.
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3 Non-standard Inferences—Motivation and Definitions

In this section, we will first motivate the non-standard inferences considered in this paper
within a uniform application scenario, in which these inferences are used to support the de-
sign of DL knowledge bases. Then, we give formal definitions of the relevant non-standard
inferences, and briefly sketch different techniques for solving them. Each non-standard
inference will be considered in more detail in a separate section, where we concentrate on
the DL ALE .

3.1 Motivation

As mentioned in the introduction, the standard DL inferences introduced in Section 2 can
already be employed during the design phase of a DL knowledge base since they allow
the knowledge engineer to check whether the definition of a concept make senses (i.e.,
whether the defined concept is satisfiable) and whether it behaves as expected (i.e., whether
the computed subsumption relationships are the ones intuitively expected). However,
inferences such as subsumption provide no support for actually coming up with a first
version of the definition of a concept. The non-standard inferences introduced in this
section can be used to overcome this deficit, basically by providing two ways of re-using
“old” knowledge when defining new one: (i) constructing concepts by generalizing from
examples, and (ii) constructing concepts by modifying “similar” ones.

The first approach was introduced as bottom-up construction of description logic knowl-
edge bases in [17, 22]. Instead of defining the relevant concepts of an application domain
from scratch, this methodology allows the user to give typical examples of individuals
belonging to the concept to be defined. These individuals are then generalized to a con-
cept by first computing the most specific concept (msc) of each individual (i.e., the least
concept description in the available description language that has this individual as an
instance), and then computing the least common subsumer (lcs) of these concepts (i.e.,
the least concept description in the available description language that subsumes all these
concepts). The knowledge engineer can then use the computed concept as a starting point
for the concept definition. As a simple example, assume that the knowledge engineer has
already defined the concept of a man and a woman as

Man ≡ Human u Male and Woman ≡ Human u Female,

and now wants to define the concept of a parent, but does not know how to do this within
the available DL (which we assume to be EL in this example). However, the available
ABox

Man(JACK), child(JACK, CAROLINE), Woman(CAROLINE),
Woman(JACKIE), child(JACKIE, JOHN), Man(JOHN),
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contains the individuals JACK and JACKIE, of whom the knowledge engineer knows that
they are parents. The most specific concepts of JACK and JACKIE in the given ABox are

Man u ∃child.Woman and Woman u ∃child.Man,

respectively, and the least common subsumer (in EL) of these two concepts w.r.t. the
definitions of Man and Woman is

Human u ∃child.Human,

which looks like a good starting point for a definition of parent.
In contrast to standard inferences such as subsumption and instance checking, the

output of the non-standard inferences we have mentioned until now (computing the msc
and the lcs) is a concept description rather than a yes/no answer. In such a setting, it
is important that the returned descriptions are as readable and comprehensible as pos-
sible. Unfortunately, the descriptions that are produced by the known algorithms for
computing the lcs and the msc do not satisfy this requirement. The reason is that—like
most algorithms for the standard inference problems—these algorithms work on expanded
concept descriptions, i.e., concept descriptions that do not contain names defined in the
underlying TBox. Consequently, the descriptions that the algorithms produce also do not
use defined concepts, which makes them in many cases large and hard to read and com-
prehend. In the above example, this means that the definitions of Man and Woman are
expanded before applying the lcs algorithm. If Human also had a definition, then it would
also be expanded, and instead of the concept description containing Human shown above,
the algorithm would return its expanded version.

This problem can be overcome by rewriting the resulting concept w.r.t. the given
TBox. Informally, the problem of rewriting a concept given a terminology can be stated
as follows: given an acyclic TBox T and a concept description C that does not contain
concept names defined in T , can this description be rewritten into an equivalent shorter
description E by using (some of) the names defined in T ? For example, w.r.t. the TBox

Woman ≡ Human u Female,

Man ≡ Human u Male,

Parent ≡ Human u ∃child.Human,

the concept description

Human u ∀child.Female u ∃child.> u ∀child.Human

can be rewritten to the equivalent concept Parent u ∀child.Woman.

In order to apply the second approach of constructing concepts by modifying existing
ones, one must first find the right candidates for modification. One way of doing this is to
give a partial description of the concept to be defined as a concept pattern (i.e., a concept

9



description containing variables), and then look for concept descriptions that match this
pattern. For example, the pattern

Man u ∃child.(Man u X) u ∃spouse.(Woman u X)

looks for descriptions of classes of men whose wife and son share some characteristic. An
example of a concept description matching this pattern is

Man u ∃child.(Man u Tall) u ∃spouse.(Woman u Tall).

We refer the reader to [71, 44, 24] for a description of other possible applications of non-
standard inferences.

3.2 Definitions

In the following, we formally define the most important non-standard inferences.

Least Common Subsumer. Intuitively, the least common subsumer of a given col-
lection of concept descriptions is a description that represents the properties that all the
elements of the collection have in common. More formally, it is the most specific concept
description that subsumes the given descriptions. How this most specific description looks
like, whether it really captures the intuition of representing the properties common to
the input descriptions, and whether it exists at all strongly depends on the DL under
consideration.

Definition 2 Let L be a DL. A concept description E of L is a least common subsumer
(lcs) of the concept descriptions C1, . . . , Cn in L (lcsL(C1, . . . , Cn) for short) iff it satisfies

1. Ci v E for all i = 1, . . . , n, and

2. E is the least L concept description with this property, i.e., if E ′ is an L concept
description satisfying Ci v E′ for all i = 1, . . . , n, then E v E ′.

As an easy consequence of this definition, the lcs is unique up to equivalence, which
justifies talking about the lcs. In addition, the n-ary lcs as defined above can be reduced
to the binary lcs (the case n = 2 above). Indeed, it is easy to see that lcsL(C1, . . . , Cn) ≡
lcsL(C1, . . . , lcsL(Cn−1, Cn) · · ·). Thus, it is enough to devise algorithms for computing
the binary lcs.

It should be noted, however, that the lcs need not always exist. This can have several
reasons: (a) there may not exist a concept description in L satisfying (1) of the definition
(i.e., subsuming C1, . . . , Cn); (b) there may be several subsumption incomparable minimal
concept descriptions satisfying (1) of the definition; (c) there may be an infinite chain
of more and more specific descriptions satisfying (1) of the definition. Obviously, (a)

10



cannot occur for DLs containing the top concept. It is easy to see that, for DLs allowing
for conjunction, (b) cannot occur. Case (c) is also rare to occur for DLs allowing for
conjunction, but this is less obvious to see. Basically, for many DLs one can use the
role depth of the concepts C1, . . . , Cn to restrict the role depth of (relevant) common
subsumers. The existence of the lcs then follows from the presence of conjunction and the
fact that, up to equivalence, there are only finitely many concepts over a finite vocabulary
having a fixed role depth (see [30] for more details). An example where case (c) actually
occurs is the DL EL with cyclic terminologies interpreted with descriptive semantics [5].

It is clear that in DLs allowing for disjunction, the lcs of C1, . . . , Cn is their disjunction
C1 t . . . t Cn. In this case, the lcs is not of interest. In fact, as we have said above, the
lcs is supposed to make explicit the properties that the input concepts have in common.
This is, of course, not achieved by writing down their disjunction. Hence, the lcs appears
to be useful only in cases where the DL does not allow for disjunction.

Definition 2 is formulated for concept descriptions, i.e., it does not take a TBox into
account. For acyclic TBoxes, this is not a real restriction since one can first expand the
definitions before computing the lcs, and then apply rewriting to the lcs to obtain an
equivalent shorter description containing defined concepts. For cyclic TBoxes, expansion
is not possible. In addition, it may be advantageous to use cycles within the definition
of the lcs, i.e., to allow us to extend the TBox by additional (possibly cyclic) concept
definitions [17, 7]. The use of cyclic TBoxes in this context is also motivated by the most
specific concept (see below).

Most Specific Concept. The most specific concept of a given ABox individual captures
all the properties of the individual that are expressible by a concept description of the DL
under consideration. Again, the form of the most specific concept and its existence strongly
depend on this DL.

Definition 3 Let L be a DL. The L concept description E is the most specific concept
(msc) in L of the individual a in the L ABox A (mscL(a) for short) iff

1. A |= E(a), and

2. E is the least L concept description satisfying (i), i.e., if E ′ is an L concept descrip-
tion satisfying A |= E ′(a), then E v E ′.

As with the lcs, the msc is unique up to equivalence, if it exists. In contrast to the lcs,
which always exists for the DLs shown in Table 2, the msc does not always exist in these
DLs. This is due to the presence of so-called role cycles in the ABox. For example, w.r.t.
the ABox

{loves(NARCIS, NARCIS), Vain(NARCIS)},

the individual NARCIS does not have an msc in EL. In fact, assume that E is the msc
of NARCIS. Then E has a finite role depth, i.e., a finite maximal number of nestings of
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existential restrictions. If this role depth is smaller than n, then E is not subsumed by
the EL concept description

E′ := ∃loves.· · · ∃loves.︸ ︷︷ ︸
n times

Vain,

in spite of the fact that NARCIS is an instance of E ′.
One way to overcome this problem is to allow for cyclic TBoxes interpreted with

greatest fixpoint semantics. In the above example, the defined concept

Narcis ≡ Vain u ∃loves.Narcis

is an msc of the individual NARCIS in EL w.r.t. cyclic TBoxes with greatest fixpoint se-
mantics. In order to employ this approach in the bottom-up construction of DL knowledge
bases, the impact of such cyclic definitions on the subsumption problem and the problem
of computing the lcs must also be dealt with. In [17] this is done for ALN , and in [8, 7] for
EL. Another possibility is to approximate the msc by restricting the attention to concept
descriptions whose role depth is bounded by a fixed number k [48, 73] (see Section 6 for
details).

Rewriting. In [23], a very general framework for rewriting in DLs is introduced, which
has several interesting instances. In order to introduce this framework, we fix a set NR of
role names and a set NP of primitive concept names.

Definition 4 Let Ls, Ld, and Lt be three DLs (the source-, destination, and TBox-DL,
respectively). A rewriting problem is given by

• an Lt TBox T containing only role names from NR and primitive concepts from NP ;
the set of defined concepts occurring in T is denoted by ND;

• an Ls concept description C using only the names from NR and NP ;

• a binary relation ρ between Ls and Ld concept descriptions.

An Ld rewriting of C using T is an Ld concept description E built using role names from
NR and concept names from NP ∪ ND such that CρE. Given an appropriate ordering ¹
on Ld concept descriptions, a rewriting E is called ¹-minimal iff there does not exist a
rewriting E ′ such that E′ ≺ E.

In this paper, we consider one instances of this general framework in more detail, the
minimal rewriting problem [23], and briefly discuss another instance, the approximation
problem [42]. The minimal rewriting problem is the instance of the framework where

• all three DLs are the same language L;
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• the TBox T is acyclic;

• the binary relation ρ corresponds to equivalence modulo the TBox;

• L concept descriptions are ordered by size, i.e., E ¹ E ′ iff |E| ≤ |E′|, where the size
|E| of a concept description E is defined to be the number of occurrences of concept
and role names in E.

The approximation problem is the instance of the framework where

• T is empty, and thus Lt is irrelevant;

• both ρ and ¹ are the subsumption relation v.

Given two DLs Ls and Ld, an Ld approximation of an Ls concept description C is thus
an Ld concept description D such that C v D and D is minimal (w.r.t. subsumption) in
Ld with this property. Typically, Ld is a less expressive DL than Ls, and hence, D is the
best approximation from above of C in Ld. One motivation for approximation is to be
able to translate a knowledge base expressed in an expressive DL into a knowledge base
expressed in a less expressive DL [23, 42].

Matching. Before we can define matching, we must define the notion of a pattern.
Concept patterns are concept descriptions in which concept variables (usually denoted
by X, Y , etc.) may occur in place of concept names. However, concept variables may
not occur in the scope of a negation. The main difference between concept names and
concept variables is that the latter can be replaced by concept descriptions when applying
a substitution. For example,

D := P u X u ∀r.(Y u ∀r.X)

is a concept pattern containing the concept variables X and Y . By applying the substi-
tution σ := {X 7→ Q, Y 7→ ∀r.P} to it, we obtain the concept description

σ(D) = P u Q u ∀r.(∀r.P u ∀r.Q).

Definition 5 Let C be a concept description and D a concept pattern. Then C ≡? D is
called a matching problem modulo equivalence and C v? D is called a matching problem
modulo subsumption. The substitution σ is a matcher of the matching problem C ≡? D

(C v? D) iff C ≡ σ(D) (C v σ(D)).

Since C v σ(D) iff C u σ(D) ≡ C, the matching problem modulo subsumption C v? D

can be reduced to the following matching problem modulo equivalence: C ≡? C u D.
However, in many cases, matching modulo subsumption is simpler than matching modulo
equivalence since it can be reduced to the subsumption problem. If the DL contains >
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and all its constructors are monotonic, then C v? D has a matcher iff the substitution
σ> that replaces all variables by > is a matcher, i.e., if C v σ>(D). However, in the
context of matching modulo subsumption, one is usually not interested in an arbitrary
solution, but rather in certain “interesting” ones. One criterion for being interesting is
that the matcher should bring D as close to C as possible, i.e., an interesting matcher σ of
C v? D should be minimal in that there does not exist another substitution δ such that
C v δ(D) @ σ(D) [37]. Other criteria for defining interesting matchers are discussed in
Section 8.2.

In Section 8, we will briefly mention an extension of matching modulo equivalence,
namely unification, where besides D also C may contain variables. Given a unification
problem of the form C ≡? D, a substitution σ is a unifier of this problem iff σ(C) ≡ σ(D).

3.3 Techniques

The approaches for solving non-standard inferences in DLs developed so far are based
on appropriate structural characterizations of the subsumption or the instance problem.
Based on these characterizations, the non-standard inferences can be characterized as well,
and from these characterizations, approaches solving these inferences can be deduced.
In the literature, two different approaches for developing structural characterizations of
subsumption have been considered: the language-based and the tree-based approach.

In the language based approach, one first computes a normal form that is based on
finite or regular sets of words over the alphabet of role names, and then characterizes
subsumption by inclusion relationships between these languages (see, e.g., [3, 70]). In the
tree-based approach, concept descriptions are turned into so-called description trees, and
subsumption is then characterized via the existence of certain homomorphisms between
these trees (see Section 4).

Since the tree-based approach to characterizing subsumption and solving non-standard
inferences will be considered in detail in the next sections, we briefly illustrate the language-
based approach for the simple DL FL0 and the non-standard inferences lcs and matching.

Using the equivalence ∀r.(C u D) ≡ ∀r.C u ∀r.D as a rewrite rule from left to right,
any FL0 concept description can be transformed into an equivalent description that is a
conjunction of descriptions of the form ∀r1.· · · ∀rm.A for m ≥ 0 (not necessarily distinct)
role names r1, . . . , rm and a concept name A. We abbreviate ∀r1.· · · ∀rm.A by ∀r1 . . . rm.A,
where r1 . . . rm is viewed as a word over the alphabet of all role names. In addition, instead
of ∀w1.Au . . .u∀w`.A we write ∀L.A where L := {w1, . . . , w`} is a finite set of words over
Σ. The term ∀∅.A is considered to be equivalent to the top concept >, which means that it
can be added to a conjunction without changing the meaning of the concept. Using these
abbreviations, any pair of FL0 concept descriptions C, D containing the concept names
A1, . . . , Ak can be rewritten as

C ≡ ∀U1.A1 u . . . u ∀Uk.Ak and D ≡ ∀V1.A1 u . . . u ∀Vk.Ak,
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where Ui, Vi are finite sets of words over the alphabet of all role names. This normal form
provides us with the following characterization of subsumption of FL0 concept descriptions
[26]:

C v D iff Ui ⊇ Vi for all i, 1 ≤ i ≤ k.

Since the size of the language-based normal forms is polynomial in the size of the original
descriptions, and since the inclusion tests Ui ⊇ Vi can also be realized in polynomial time,
this yields a polynomial-time decision procedure for subsumption in FL0.

As an easy consequence of this characterization we obtain that the lcs E of C, D is of
the form

E ≡ ∀(U1 ∩ V1).A1 u . . . u ∀(Uk ∩ Vk).Ak,

and thus can also be computed in polynomial time.
In order to treat matching in FL0 using the language-based approach, the language-

based normal form of FL0 concept descriptions is extended in the obvious way to patterns.
Let C be an FL0 concept description and D an FL0 concept pattern. We can write C, D

in the form
C ≡ ∀S0,1.A1 u . . . u ∀S0,k.Ak,

D ≡ ∀T0,1.A1 u . . . u ∀T0,k.Ak u ∀T1.X1 u . . . u ∀Tn.Xn,

where A1, . . . , Ak are the concept names and X1, . . . , Xn the concept variables occurring
in C, D, and S0,i, T0,i, Tj with i = 1, . . . , k, j = 1, . . . , n are finite sets of words over the
alphabet of all role names.

In [26] it is shown that the matching problem modulo equivalence C ≡? D has a
matcher iff for all i = 1, . . . , k, the linear language equation

S0,i = T0,i ∪ T1X1,i ∪ · · · ∪ TnXn,i

has a solution, i.e., we can substitute the variables Xj,i by finite languages such that the
equation holds. Solvability of this linear language equation can be decided in polynomial
time since it is sufficient to check whether the following substitution θ is a solution:

θ(Xj,i) :=
⋂

u∈Tj

u−1S0,i,

where u−1S0,i = {v | uv ∈ S0,i}.
We have used FL0 to sketch how the language based approach for characterizing

subsumption can be used to to solve non-standard inferences. In the rest of this paper,
we will concentrate on the tree based approach.

4 A Structural Characterization of Subsumption

As explained in the previous section, the basis for solving non-standard inferences is an
appropriate structural characterization of subsumption. In this section, we present the
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characterization for the DL ALE given in [22] in detail. Characterizations for other DLs
are discussed only briefly.

The idea underlying the characterization of subsumption between ALE concept de-
scription is as follows. First, the concept descriptions are presented as edge- and node-
labeled trees—called description trees—in which certain implicit facts have been made
explicit. Then, we show that subsumption between ALE concept descriptions corresponds
to the existence of homomorphisms between description trees.

As a warming-up, in Section 4.1, we first present the characterization of subsumption
for the sublanguage EL of ALE , with the extension to ALE presented in Section 4.2. We
then briefly discuss characterizations of subsumption for extensions of ALE and other
families of DLs (Section 4.3).

4.1 Getting Started — The Characterization for EL

We first introduce EL description trees, and then present the characterization of subsump-
tion.

Definition 6 EL description trees are of the form G = (V, E, v0, `) where G is a tree with
root v0 whose edges vrw ∈ E are labeled with role names r ∈ NR, and whose nodes v ∈ V

are labeled with sets `(v) of concept names from NC . The empty label corresponds to the
top-concept.

Intuitively, such a tree is merely a graphical representation of the syntax of the con-
cept description. More formally, every EL concept description C can be written (modulo
equivalence) as C ≡ P1 u . . . u Pn u ∃r1.C1 u . . . u ∃rm.Cm with Pi ∈ NC ∪ {>}. This
description can now be translated into an EL description tree GC = (V, E, v0, `) as follows.
The set of all concept names occurring in the top-level conjunction of C yields the label
`(v0) of the root v0, and each existential restriction ∃ri.Ci in this conjunction yields an
ri-successor that is the root of the tree corresponding to Ci. For example, the EL concept
description

C := P u ∃r.(∃r.(P u Q) u ∃s.Q) u ∃r.(P u ∃s.P )

yields the tree GC depicted on the left-hand side of Figure 1.
Conversely, every EL description tree G = (V, E, v0, `) can be translated into an EL

concept description CG . Intuitively, the concept names in the label of v0 yield the concept
names in the top-level conjunction of CG , and each r-successor v of v0 yields an existential
restriction ∃r.C where C is the EL concept description obtained by translating the subtree
of G rooted at v. For a leaf v ∈ V , the empty label is translated into the top-concept. For
example, the EL description tree G in Figure 1 yields the EL concept description

CG = ∃r.(∃r.P u ∃s.Q) u ∃r.P.

These translations preserve the semantics of concept descriptions in the sense that C ≡
CGC

holds for all EL concept descriptions C.

16



r

s

r

r

v′4:{P}

v′2:{P} v′3:{Q}

v′0:∅

v′1:∅

G:v0:{P}

r

s

v1:∅

v3:{Q}

s

v5:{P}

r

r

v4:{P}

GC :

v2:{P, Q}

Figure 1: Two EL description trees.

Definition 7 A homomorphism from an EL description tree H = (VH , EH , w0, `H) into
an EL description tree G = (VG, EG, v0, `G) is a mapping ϕ : VH −→ VG such that

1. ϕ(w0) = v0,

2. `H(v) ⊆ `G(ϕ(v)) for all v ∈ VH , and

3. ϕ(v)rϕ(w) ∈ EG for all vrw ∈ EH .

Subsumption in EL can be characterized in terms of homomorphisms between EL descrip-
tion trees.

Theorem 8 Let C, D be EL concept descriptions and GC ,GD be the corresponding EL
description trees. Then C v D iff there exists a homomorphism from GD into GC .

In our example (see Figure 1), the EL concept description CG subsumes C. Indeed,
mapping v′i to vi for all 0 ≤ i ≤ 4 yields a homomorphism from G = GCG

to GC .
Theorem 8 may look like a special case of the characterization of subsumption between

simple conceptual graphs [47], and of the characterization of containment of conjunctive
queries [1]. In the more general setting of simple conceptual graphs and conjunctive
queries, one considers homomorphisms between graphs, and thus testing for the existence
of a homomorphism is an NP-complete problem [52]. If one restricts the attention to
graphs that are trees, then testing for the existence of a homomorphism can be real-
ized in polynomial time using dynamic programming techniques [86]. Thus, Theorem 8
implies that subsumption between EL concept descriptions is a tractable problem, as al-
ready mentioned in Section 2. The fact that both subsumption in EL and subsumption
of conceptual graphs (containment of conjunctive queries) corresponds to the existence of
homomorphisms suggests a stronger connection between these problems than is actually
the case. In fact, the nodes in conceptual graphs (the variables in conjunctive queries)
stand for individuals whereas the nodes of EL description trees stand for concepts (i.e.,
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sets of individuals). This semantic difference becomes relevant if one considers cyclic EL
TBoxes, which can be represented by description graphs. In this case, however, subsump-
tion no longer corresponds to the existence of a homomorphism, but to the existence of
a so-called simulation relation [8]. Whereas the existence of a homomorphism is an NP-
complete problem, the existence of a simulation relation can still be checked in polynomial
time. It is only for trees that both problems are identical, i.e., on trees the existence of a
simulation relation implies the existence of a homomorphism and vice versa, whereas this
does not hold on general graphs.

4.2 Extending the Characterization to ALE

To obtain a characterization of subsumption for ALE , we must first extend EL description
trees to ALE description trees. Since ALE concept descriptions may contain value restric-
tions in addition to existential restrictions, ALE description trees have two types of edges,
namely those labeled with a role name r ∈ NR, which correspond to existential restrictions
of the form ∃r.C, and those labeled with ∀r, which correspond to value restrictions of the
form ∀r.C. Also, we have to allow negated concept names ¬P and the bottom concept ⊥
in the labels of nodes, in addition to concept names P ∈ NC . As in the case of EL, there
is a one-to-one correspondence between ALE concept descriptions and ALE description
trees.

It might be tempting to think that the notion of a homomorphism can also be extended
in such a straightforward way to ALE description trees as well by just adding the following
requirement to Definition 7:

4. ϕ(v) ∀r ϕ(w) ∈ EG for all v ∀r w ∈ EH .

Now, using this notion of a homomorphism between ALE description trees, one could try
to characterize subsumption as before. However, this fails for several reasons.

First, we need to take into account implicit facts that are implied by interactions among
value restrictions and among value restrictions and existential restrictions. Consider, for
instance, the ALE concept descriptions and their translations into ALE description trees
depicted in Figure 2. It is easy to see that C v D and C ′ v D′, but that there exist
neither a homomorphism from GD to GC nor one from GD′ to GC′ . The problem is that C

and D are actually equivalent to ∀r.(P uQ) and that C ′ is equivalent to ∃r.(P uQ)u∀r.Q,
but that this is not reflected in the description trees.

To make such implicit facts explicit, we have to normalize the ALE concept descrip-
tions before translating them into ALE description trees. For this purpose, the following
normalization rules are exhaustively applied to the given ALE concept descriptions:

∀r.E u ∀r.F −→ ∀r.(E u F ),
∀r.E u ∃r.F −→ ∀r.E u ∃r.(E u F ),

∀r.> −→ >,
E u > −→ E.
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Figure 2: Examples illustrating that implicit facts induced by value and existential re-
strictions must be taken into account.

Since each normalization rule preserves equivalence, the resulting ALE concept descrip-
tions are equivalent to the original ones. The rules should be read modulo associativ-
ity and commutativity of conjunction. For instance, ∃r.E u ∀r.F is also turned into
∃r.(E u F ) u ∀r.F .

The above normalization rules are, however, not yet sufficient to make all implicit facts
explicit. This is due to the fact that an ALE concept description may contain unsatisfiable
subdescriptions. In addition to the above normalization rules, we need three more rules
to handle this:

P u ¬P −→ ⊥ for each P ∈ NC ,
∃r.⊥ −→ ⊥,

E u ⊥ −→ ⊥.

Starting with an ALE concept description C, the exhaustive application of (both groups
of) rules yields an equivalent ALE concept description in normal form. Given such a
normal form, the corresponding ALE description tree is obtain as in the case of EL, with
the obvious adaptations due to the existence of two different kinds of edges and the fact
that the label of a node may be ⊥. We refer to the ALE description tree corresponding to
the normal form of C as GC .

Unfortunately, even after normalization, the straightforward adaptation of the notion
of a homomorphism from EL description trees to ALE description trees sketched above
does not yield a sound and complete characterization of subsumption in ALE . As an
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Figure 3: Example illustrating that the notion of a homomorphism must be adapted.

example, consider the following ALE concept descriptions:

C := (∀r.∃r.(P u ¬P )) u (∃s.(P u ∃r.Q)),

D := (∀r.(∃r.P u ∃r.¬P )) u (∃s.∃r.Q).

The description D is already in normal form, and the normal form of C is

C ′ := ∀r.⊥ u ∃s.(P u ∃r.Q).

The corresponding ALE description trees GC and GD are depicted in Figure 3. It is easy to
see that there does not exist a homomorphism in the above sense from GD into GC , although
we have C v D. In particular, the ALE concept description ∃r.P u∃r.¬P corresponding to
the subtree with root w1 of GD subsumes ⊥, which is the concept description corresponding
to the subtree with root v1 in GC . Therefore, a homomorphism from GD into GC should be
allowed to map the whole tree corresponding to ∃r.P u ∃r.¬P , i.e., the nodes w1, w2, w3,
onto the tree corresponding to ⊥, i.e., onto v1.

The example suggests the following new notion of a homomorphism on ALE description
trees.

Definition 9 A homomorphism from an ALE description tree H = (VH , EH , w0, `H) into
an ALE description tree G = (VG, EG, v0, `G) is a mapping ϕ : VH −→ VG such that

1. ϕ(w0) = v0,

2. `H(v) ⊆ `G(ϕ(v)) or `G(ϕ(v)) = {⊥} for all v ∈ VH ,

3. for all vrw ∈ EH , either ϕ(v)rϕ(w) ∈ EG, or ϕ(v) = ϕ(w) and `G(ϕ(v)) = {⊥},
and

4. for all v∀rw ∈ EH , either ϕ(v)∀rϕ(w) ∈ EG, or ϕ(v) = ϕ(w) and `G(ϕ(v)) = {⊥}.
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In Figure 3, if we map w0 onto v0; w1, w2, and w3 onto v1; w4 onto v2; and w5 onto v3,
then the above conditions are satisfied, i.e., this mapping yields a homomorphism from
GD into GC . With this new notion of a homomorphism between ALE description trees,
we can characterize subsumption in ALE in a sound and complete way.

Theorem 10 Let C, D be two ALE concept descriptions and GC , GD the corresponding
ALE description trees. Then C v D iff there exists a homomorphism from GD into GC .

It should be noted that there is a close relationship between the normalization rules
introduced above and some of the rules employed by tableaux-based subsumption algo-
rithms, as e.g. introduced in [50]. As shown in [50], the propagation of value restrictions
on existential restrictions may lead to an exponential blow-up (see the concept descrip-
tions Cn introduced below Theorem 15). Consequently, the size of the normal forms, and
thus also of the description trees, may grow exponentially in the size of the original ALE
concept descriptions. It is easy to see that this exponential blow-up cannot be avoided.
On the one hand, as for EL, the existence of a homomorphism between ALE description
trees can still be tested in polynomial time. On the other hand, subsumption in ALE is
an NP-complete problem [50].

4.3 Characterization of Subsumption for Other DLs

The characterization of subsumption for ALE has been extended to ALEN in [74]. There,
description trees are not used explicitly. Subsumption is rather characterized directly for
the normalized concept descriptions, by using induction on the role depth of the descrip-
tions.

For the sublanguage ALNS of the DL employed by the CLASSIC system [36], which
extends ALN by the so-called same-as operator, subsumption has been characterized in
[72]. Due to the presence of the same-as operator in ALNS, description graphs instead
of description trees are used in this characterization.

For DLs with cyclic TBoxes, subsumption has been characterized for FL0 [4], ALN
[70], and EL [8] w.r.t. the three types of semantics employed for cyclic TBoxes: descriptive
semantics, and greatest and least fixed point semantics. For FL0 and ALN , subsumption
has been characterized using the language-based approach (see Section 3.3). For EL, the
characterization extends the approach for EL concept descriptions presented in Section 4.1.
However, instead of homomorphisms between description trees, simulation relationships
on description graphs are employed.

5 The Least Common Subsumer

In this section, we study the existence of the lcs and how it can be computed (if it exists).
Our exposition again concentrates on ALE . It is based on the results shown in [22]. In
addition, we briefly mention results for other DLs.
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Figure 4: The product of EL description trees.

As we will see, once the structural characterization of subsumption is in place, it is
rather easy to derive algorithms for computing the lcs. As a warming up exercise, in the
following subsection, we present an lcs algorithm for EL. Its extension to ALE is described
in Section 5.2. An overview of results for other DLs is provided in Section 5.3.

5.1 The LCS for EL

The characterization of subsumption by homomorphisms allows us to characterize the lcs
by the product of EL description trees.

Definition 11 The product G ×H of two EL description trees G = (VG, EG, v0, `G) and
H = (VH , EH , w0, `H) is defined inductively on the depth of the trees. Let G(v) denote
the subtree of G rooted at v. We define (v0, w0) to be the root of G × H, labeled with
`G(v0) ∩ `H(w0). For each r-successor v of v0 in G and w of w0 in H, we obtain an
r-successor (v, w) of (v0, w0) in G ×H that is the root of the product of G(v) and H(w).

For example, consider the EL description tree GC (Figure 1) and the EL description tree GD

(Figure 4), where GD corresponds to the EL concept description D := ∃r.(P u∃r.P u∃s.Q).
The product GC × GD is depicted on the right-hand side of Figure 4.

Theorem 12 Let C, D be two EL concept descriptions and GC , GD the corresponding EL
description trees. Then CGC×GD

is the lcs of C and D. In particular, the lcs of EL concept
descriptions always exists.

In our example, we thus obtain that the lcs of C = Pu∃r.(∃r.(PuQ)u∃s.Q)u∃r.(Pu∃s.P )
and D = ∃r.(P u ∃r.P u ∃s.Q) is

lcsEL(C, D) = ∃r.(∃r.P u ∃s.Q) u ∃r.(P u ∃s.>).
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The size of the lcs of two EL concept descriptions C, D can be bounded by the size of
GC × GD, which is polynomial in the size of GC and GD. Since the size of the description
tree corresponding to a given description is linear in the size of the description, we obtain:

Proposition 13 The size of the lcs of two EL concept descriptions C, D is polynomial
in the size of C and D, and the lcs can be computed in polynomial time.

In many applications, however, one is interested in the lcs of n > 2 concept descriptions
C1, . . . , Cn. This lcs can be obtained from the n-ary product GC1

× · · · × GCn of their
corresponding EL description trees. Therefore, the size of the lcs can be bounded by the
size of this product. It is not hard to show that in general this size cannot be polynomially
bounded [22, 31].

Proposition 14 The size of the lcs of n EL concept descriptions C1, . . . , Cn of size linear
in n may grow exponentially in n.

5.2 The LCS for ALE

Just as for EL, the lcs of ALE concept descriptions can be obtain as the product of the
corresponding ALE description trees. However, the definition of the product must be
adapted to the modified notion of a homomorphism. In particular, this definition must
treat leaves with label {⊥} in a special manner. Such a leaf corresponds to the bottom-
concept, and since ⊥ v C for all ALE concept descriptions C, we have lcs(⊥, C) ≡ C.
Thus, our product operation should be defined such that CG⊥×GC

≡ C.
More precisely, the product G × H of two ALE description trees G = (VG, EG, v0, `G)

and H = (VH , EH , w0, `H) is defined as follows. If `G(v0) = {⊥} (`H(w0) = {⊥}), then
we define G ×H by replacing each node w in H (v in G) by (v0, w) ( (v, w0) ). Otherwise,
we define G ×H by induction on the depth of the trees analogous to the definition of the
product of ALE description trees.

For the ALE description trees depicted in Figure 3, GC × GD is obtained from GD by
replacing w0 by (v0, w0), wi by (v1, wi) for i = 1, 2, 3, w4 by (v2, w4), and w5 by (v3, w5).

2

Theorem 15 Let C, D be two ALE concept descriptions and GC , GD their corresponding
ALE description trees. Then CGC×GD

is the lcs of C and D. In particular, the lcs of ALE
concept descriptions always exists.

Unlike EL, the size of the lcs of two ALE concept descriptions may already grow
exponentially. To see this, consider the following example. Let Cn, n ≥ 1, be defined
inductively as

C1 := ∃r.P u ∃r.Q and Cn := ∃r.P u ∃r.Q u ∀r.Cn−1

2Note that this is a somewhat atypical example since in this case C is subsumed by D, and thus the
lcs is equivalent to D.
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and let Dn, n ≥ 1, be defined as

D1 := ∃r.(P u Q) and Dn := ∃r.(P u Q u Dn−1).

Note that the size of the normal form of Cn grows exponentially in n. It is easy to verify
that the lcs of Cn and Dn is equivalent to the concept description En where

E1 := ∃r.P u ∃r.Q and En := ∃r.(P u En−1) u ∃r.(Q u En−1).

The size of En grows exponentially in n. It is not hard to check that there does not exist
a smaller concept description equivalent to the lcs of Cn and Dn. Hence, we obtain:

Proposition 16 The size of the lcs of two ALE concept descriptions C, D may be expo-
nential in the size of C, D.

The above example suggests that, by employing structure, sharing the size of the lcs can
be reduced. However, in general this is not the case. More specifically, it was shown in [31]
that even if equivalent sub-concept descriptions of the lcs can be represented as defined
concepts in an acyclic TBox, the representation of the lcs may still grow exponentially.

5.3 The LCS for other DLs

Based on the structural characterization of subsumption for the DLs mentioned in Sec-
tion 4.3, algorithms for computing the lcs have been employed in a similar manner as
illustrated above [74, 72, 17, 7, 5]. Interestingly, for the DL ALNS it has turned out that
the existence of the lcs depends on whether features, i.e., roles that are restricted to be
functional, are are interpreted as partial or total functions. While in the former case, the
lcs always exists, this is not true in the latter case [72]. As mentioned above, for the DL
EL with cyclic TBoxes interpreted with descriptive semantics the lcs also need not exist
[5].

6 The Most Specific Concept

As illustrated in Section 3.2, most specific concepts need not exist for DLs with number
restrictions or existential restrictions. There are two ways to overcome this problem. First,
the languages can be extended to allow for cyclic TBoxes interpreted with the greatest fixed
point semantics. Second, one can resort to approximating the most specific concept. In the
following subsection, we consider the latter approach in more detail, mainly concentrating
on the simple DL EL. Besides introducing methods for computing approximations, we
will also characterize the existence of the msc. In Section 6.2, we will summarize results
obtained following the first approach.
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6.1 Existence and Approximation of the MSC

The example presented in Section 3.2 illustrates that describing an msc may require a con-
cept description with infinite role depth. Such a concept description can be approximated
by restricting the role depth to a fixed constant k. This leads to the notion of a k-
approximation. In Section 3.3 we have pointed out that the basis for solving non-standard
inferences is an appropriate characterization of the underlying standard inference. For the
lcs, this standard inference is the subsumption problem. In order characterize the msc and
to design algorithms for computing (approximations of) it, an appropriate characterization
of the instance problem is needed.

After defining k-approximations in Section 6.1.1, we first present a characterization of
the instance problem in Section 6.1.2 and then, in Section 6.1.3, apply this characterization
to compute k-approximations. All this is done for the simple case that the DL is EL.
Extensions to more expressive DLs are discussed in Section 6.1.4. The results presented
in this section are mainly based on [73].

6.1.1 Defining k-Approximations

To give a formal definition of k-approximations of the msc, we first need to define the role
depth of concept descriptions. The role depth depth(C) of an EL concept description C

is defined as the maximum number of nested quantifiers in C:

depth(>) = depth(P ) = 0,

depth(C u D) = max(depth(C), depth(D)),

depth(∃r.C) = depth(C) + 1.

Definition 17 Let A be an EL-ABox, b an individual in A, C an EL concept descriptions,
and k ∈ N. Then, C is a k-approximation of b w.r.t. A (msck

EL(b)) iff

1. A |= C(b),

2. depth(C) ≤ k, and

3. C v C ′ for all EL concept descriptions C ′ with A |= C ′(b) and depth(C ′) ≤ k.

It is an easy consequence of this definition that k-approximations are unique up to equiv-
alence (if they exist). Thus, we can talk about the k-approximation of a given individual.

The k-approximation of the individual Narcis in the example presented in Section 3.2
is the EL concept description

∃loves. . . . .∃loves︸ ︷︷ ︸
k times

.Vain.
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6.1.2 Characterizing the Instance Problem in EL

In order to characterize instance relationships, we need to introduce description graphs
(representing ABoxes) as a generalization of description trees (representing concept de-
scriptions). An EL description graph is a labeled graph of the form G = (V, E, `) whose
edges vrw ∈ E are labeled with role names r ∈ NR and whose nodes v ∈ V are labeled
with sets `(v) of concept names from NC . The empty label corresponds to the top-concept.

Similarly to the translation of EL concept descriptions into EL description trees, an
EL-ABox A is translated into an EL description graph G(A) in the following way. Let
Ind(A) denote the set of all individuals occurring in A. For each a ∈ Ind(A), let

Ca =

{
u

D(a)∈A
D if there exists a concept assertion of the form D(a) ∈ A,

> otherwise.

Let GCa = (Va, Ea, a, `a) denote the EL description tree obtained from Ca.
3 Without loss

of generality we assume that the sets Va for a ∈ Ind(A) are pairwise disjoint. Then,
G(A) = (V, E, `) is defined as

• V =
⋃

a∈Ind(A) Va,

• E = {arb | r(a, b) ∈ A} ∪
⋃

a∈Ind(A) Ea, and

• `(v) = `a(v) for all v ∈ Va.

As an example, consider the EL ABox

A = {(P u ∃s.(Q u ∃r.P u ∃s.>))(a), (P u Q)(b), (∃r.P )(c),
r(a, b), r(a, c), s(b, c)}.

The corresponding EL description graph G(A) is depicted on the right-hand side of Fig-
ure 5. Later on we will also consider the EL description tree of

C = ∃s.(Q u ∃r.>) u ∃r.(Q u ∃s.>),

which is depicted on the left-hand side of this figure.
Now, an instance relationship A |= C(a) in EL can be characterized via the existence

of a homomorphism from the description tree of C into the description graph of A, where
such homomorphisms are defined analogously to the case of homomorphisms between EL
description trees. Given an individual a, we must require that homomorphism maps the
root of the description tree to the node a in G(A).

Theorem 18 Let A be an EL-ABox, a ∈ Ind(A) be an individual in A, and C be an EL
concept description. Then, A |= C(a) iff there exists a homomorphism ϕ from GC into
G(A) such that ϕ(v0) = a, where v0 is the root of GC .

3Note that the individual a is defined to be the root of G(Ca); in particular, this means that a ∈ Va.
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v1 : {Q} v3 : {Q}

v4 : ∅v2 : ∅
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v0 : ∅
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a : {P}

b : {P, Q}

c : ∅

s

w1 : {Q}

w2 : {P} w3 : ∅ w4 : {P}

s rr

s

G(A) :

Figure 5: The EL description tree of C and the EL description graph of A.

In our example (Figure 5), a is an instance of C, since mapping v0 on a, vi on wi, i = 1, 2,
and v3 on b and v4 on c yields a homomorphism from G(C) into G(A).

As mentioned in Section 4, existence of a homomorphism between graphs is an NP-
complete problem. In the restricted case of testing for the existence of homomorphisms
mapping trees into graphs, the problem is polynomial [52]. Thus, as a corollary of Theo-
rem 18, we obtain the following complexity result.

Corollary 19 The instance problem for EL can be decided in polynomial time.

6.1.3 Computing k-Approximations

Our algorithm for computing msck
EL(a) is based on the following idea. Let T (a,G(A))

denote the tree with root a obtained from the graph G(A) by unraveling. This tree has a
finite branching factor, but possibly infinitely long paths. Pruning all paths to length k

yields an EL description tree Tk(a,G(A)) of depth ≤ k. Using Theorem 18 and Theorem 8,
it is easy to show that the EL concept description CTk(a,G(A)) is equivalent to msck

EL(a). In
addition, we obtain a characterization of the existence of the msc. The following theorem
summarizes the results.

Theorem 20 Let A be an EL-ABox, a ∈ Ind(A), and k ∈ N. Then, CTk(a,G(A)) is the
k-approximation of a w.r.t. A. If, starting from a, no cyclic can be reached in A (i.e.,
T (a,G(A)) is finite), then CT (a,G(A)) is the msc of a w.r.t. A; otherwise no msc exists.

As a corollary of this theorem we obtain:

Corollary 21 For an EL-ABox A, an individual a ∈ Ind(A), and k ∈ N, the k-approxi-
mation of a w.r.t. A always exists and it can be computed in time polynomial in the size
of A if k is assumed to be constant, and in exponential time otherwise. The existence of
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the msc can be decided in polynomial time. If the msc exists, then it can be computed in
time exponential in the size of A.

Taking the ABox A = {r(a, a), s(a, a)} as an example, it is easy to see that the size of the
k-approximation of A may grow exponentially in k if no structure sharing is employed.
However, this exponential blow-up can be avoided when the k-approximations are defined
by acyclic TBoxes. The same is true for the msc in case it exists: Consider, for instance,
the ABox which consists of a sequence a1, . . . , an of n individuals where there is an r and
an s edge from ai to ai+1 for every i.

6.1.4 Extensions to more Expressive DLs

So far, not much is known about computing k-approximations of the msc for DLs more
expressible than EL. In [73], the approach presented above is extended to the DL EL¬,
which extends EL by the bottom concept ⊥ and primitive negation ¬P . In the following,
we briefly present the ideas behind computing k-approximations of the msc in EL¬, and
discuss the problems that arise when considering more expressive DLs.

The following example illustrates that a näıve extension of the approach for EL does
not work for EL¬. Consider, for instance, the following EL¬ concept description C and
EL¬ ABox A:

C = P u ∃r.(P u ∃r.¬P )

A = {P (a), P (b1), ¬P (b3), r(a, b1), r(a, b2), r(b1, b2), r(b2, b3)}.

The corresponding description tree and graph are depicted in Figure 6. Obviously, there
does not exist a homomorphism ϕ from GC into G(A) with ϕ(w0) = a, because neither
P ∈ `(b2) nor ¬P ∈ `(b2). For each model I of A, however, either bI2 ∈ P I or bI2 ∈ (¬P )I ,
and thus aI ∈ CI . Thus, a is an instance of C w.r.t. A even though there does not exist
a homomorphism ϕ from GC into G(A) with ϕ(w0) = a.

The reason for the problem illustrated by the example is that for the individuals in
the ABox it is not always fixed whether they are instances of a given atomic concept or
of its negation. In order to obtain a sound and complete characterization analogous to
Theorem 18, we therefore consider all so-called atomic completions of G(A). An atomic
completion of G(A) is obtained from G(A) by adding, for all concept names P and all
nodes whose label contains neither P nor ¬P , either P or ¬P to the label of this node.

In [73], it is shown that an individual a of the consistent EL¬-ABox A is an instance
of the EL¬ concept description C iff for every atomic completion G ′ of G(A) there exists
a homomorphism from GC into G′ that maps the root of GC onto a.

Using this characterization of the instance problem, it is possible to show that the
instance problem for EL¬ is coNP-complete. Also, k-approximations can be obtained by
unraveling the completions up to depth k and then taking the lcs of these completions.
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b3 : {¬P}

Figure 6: The EL¬ description graph and the EL¬ description tree of our example.

Unfortunately, for ALE (or even more expressive DLs), analogous characterizations
of the instance problem are not known. However, given finite sets of concept and role
names, the set of all ALE concept descriptions of depth ≤ k is finite (up to equivalence)
and can be computed effectively. The fact that ALE allows for conjunction implies that a
k-approximation always exists: it can be obtained as the conjunction of all concepts (up
to equivalence) of depth ≤ k that have the individual a as an instance. Obviously, this
generic argument also carries over to more expressive DLs, including ALCN and beyond.
However, such an enumeration algorithm is clearly to complex, and thus of no practical
use.

6.2 The Most Specific Concept in the Presence of Cyclic TBoxes

It has first been shown for cyclic ALN TBoxes [17] and more recently for cyclic EL
TBoxes [7] that the msc always exists if the TBoxes are interpreted with the greatest
fixed point semantics. In addition, this msc can effectively be computed. In contrast, the
msc need not exist if the TBoxes are interpreted with the least fixed-point semantics or
descriptive semantics. The problem of computing the msc w.r.t. EL TBoxes interpreted
with descriptive semantics is investigated in [6, 9].

7 Rewriting

In this section, we review results obtained for computing minimal rewritings, as defined
in Section 3.2. As before, in our exposition we concentrate on ALE and sublanguages
thereof, and comment on results for other DLs only briefly. As introduced in Section 3.2,
the minimal rewriting problem is one instance of a more general rewriting framework.
Another instance is approximation, which is also briefly discussed here.

In the following subsection, we consider the minimal rewriting decision problem. This
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will provide us with complexity lower bounds for the problem of computing minimal rewrit-
ings. The minimal rewriting computation problem itself is covered in Section 7.2. Ap-
proximation is discussed in Section 7.3. The results for minimal rewriting presented in
this section are based mainly on the results of [23].

7.1 The Minimal Rewriting Decision Problem

Formulated for ALE , the minimal rewriting decision problem is concerned with the follow-
ing question: given an ALE concept description C, an ALE TBox T , and a non-negative
integer κ, does there exist an ALE-rewriting E of C using T such that |E| ≤ κ.

Clearly, this problem is decidable in nondeterministic polynomial time using an oracle
for deciding equivalence modulo TBoxes by the following algorithm. First, guess an ALE
concept description E of size ≤ κ. Then check whether E is equivalent to C modulo T .

This simple algorithm yields the following complexity upper bounds for the minimal
rewriting decision problem in ALE . If T is unfolded, i.e., the right-hand sides of the
concept definitions do not contain defined concepts, we know that equivalence in ALE is
in NP (see Section 2). Otherwise, if we do not assume T to be unfolded, equivalence is
in PSPACE4 since this is even the case for the larger DL ALC (see Section 2). Hence, for
unfolded TBoxes the minimal rewriting decision problem for ALE is in NP, and otherwise
it is in PSPACE.

Conversely, it is easy to see that the minimal rewriting decision problem is at least as
hard as deciding subsumption. Let C and D be ALE concept descriptions, and A, P1, P2

be three different concept names not occurring in C, D. It is easy to see that C v D iff
there exists a minimal rewriting of size ≤ 1 of the ALE concept description P1 u P1 u C

using the TBox T = {A
·
= P1uP2uCuD}. Since subsumption in ALE w.r.t. an (unfolded

or non-unfolded) ALE TBox is NP-hard, it follows that the minimal rewriting decision
problem is NP-hard for ALE .

Theorem 22 In ALE, the minimal rewriting decision problem is NP-complete for un-
folded ALE TBoxes. With respect to arbitrary acyclic TBoxes, this problem is NP-hard
and in PSPACE.

Clearly, the above arguments also apply to other DLs. For example, we can use these
arguments and the known complexity results for subsumption and equivalence in ALC to
show that the minimal rewriting decision problem is PSPACE-complete for ALC (inde-
pendently of whether the ALC TBox is unfolded or not). It should be noted, however,
that the complexity of the subsumption problem is not the only source of complexity for
the minimal rewriting decision problem. This problem is an optimization problem, which
is responsible for the fact that the minimal rewriting decision problem may be intractable

4This is only an upper bound. The exact complexity of the equivalence problem in ALE with acyclic
TBoxes is not known.
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even if the subsumption problem is tractable. For example, subsumption w.r.t. unfolded
TBoxes in FL0 and ALN is in P, but the NP-hardness of the minimal rewriting decision
problem can nevertheless be shown by a reduction from SETCOVER (see [23] for details).

7.2 The Minimal Rewriting Computation Problem

Whereas the previous subsection was concerned with deciding whether there exists a
rewriting within a given size bound, this subsection considers the problem of actually
computing minimal rewritings. This is called the minimal rewriting computation problem.
Since the minimal rewriting decision problem can obviously be reduced in polynomial time
to the minimal rewriting computation problem, the lower bounds shown above immedi-
ately carry over to the computation problem.

To be more precise, there are actually two different variants of the computation prob-
lem. For a given instance (C, T ) of the minimal rewriting computation problem, one
can be interested in computing either (1) one minimal rewriting of C using T , or (2) all
minimal rewritings of C using T .

The hardness results of the previous subsection imply that even computing one minimal
rewriting is in general a hard problem. In addition, it is easy to see that the number of
minimal rewritings of a concept description C w.r.t. a TBox T can be exponential in
the size of C and T . Consider, for instance, the concept description Cn = P1 u . . . u Pn

and the TBox Tn = {Ai
.
= Pi | 1 ≤ i ≤ n}. The minimal rewritings are of the form

E = Pi1 u · · ·Pik u Aj1 u · · ·Ajl
where l + k = n and {1, . . . , n} = {i1, . . . , ik, j1, . . . , jl}.

Obviously, there are exponentially many such rewritings.
It is very easy to come up with an algorithm for computing one or all minimal rewritings

of a concept description C w.r.t. the TBox T . Since the size of the minimal rewritings
is bounded by the size of C, one can simply enumerate all concept descriptions of size
less than or equal to the size of C, and check which of them are equivalent to C w.r.t. T .
Those of minimal size are the minimal rewritings. Clearly, this algorithm works for all DLs
where equivalence w.r.t. a TBox is decidable. However, such a brute-force enumeration
algorithm is clearly too inefficient to be of any practical interest.

In what follows, we present a more source-driven algorithm for ALE , which uses the
form of C (rather than only the size of C) to prune the search space.5 The algorithm
assumes the concept description C to be in ∀-normal form. This normal form is obtained
from C (in polynomial time) by exhaustively applying the rule ∀r.Eu∀r.F −→ ∀r.(EuF )
to C. As a result, every conjunction in C contains at most one value restriction ∀r.D for
a given role r ∈ NR.

Given an ALE concept description C in ∀-normal form and an ALE TBox T , the
algorithm for computing minimal rewritings works as follows:

5A similar approach works also for the DL ALN [23].
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1. Compute an extension C∗ of C w.r.t. T , which adds some defined concepts to C

without changing its meaning.

2. Compute a reduction Ĉ of C∗ w.r.t. T , which removes parts of C∗ without changing
its meaning..

3. Return Ĉ.

It remains to give formal definitions of the notions “extension” and “reduction.”

Definition 23 Let C be an ALE concept description and T be an ALE TBox. An ex-
tension C∗ of C w.r.t. T is an ALE concept description obtained from C by conjoining
defined names at some positions in C such that C∗ is equivalent to C modulo T .

Obviously, there may exist exponentially many different extensions of C∗, which shows
that this step may take exponential time. Alternatively, we could considered this to be a
non-deterministic step, in which an appropriate extension is guessed.

Informally speaking, a reduction Ĉ of C∗ w.r.t. T is an ALE concept description ob-
tained from C∗ by “eliminating all redundancies in C∗” such that the resulting concept
description is still equivalent to C∗ modulo T . A concept description may have exponen-
tially many different reductions, and hence computing reductions may also be considered
to be a non-deterministic step.

Before defining the notion of a “reduction” formally, let illustrates the working of our
by a simple example. Consider the ALE concept description

C = P u Q u ∀r.P u ∃r.(P u ∃r.Q) u ∃r.(P u ∀r.(Q u ¬Q)),

and the ALE TBox T = { A1
.
= ∃r.Q, A2

.
= P u ∀r.P, A3

.
= ∀r.P }.

The concept description

C∗ = A2 u P u Q u ∀r.P u

∃r.(A1 u P u ∃r.Q) u ∃r.(P u ∀r.(Q u ¬Q))

is an extension of C. A reduction of C∗ can be obtained by eliminating

• P and ∀r.P on the top-level of C∗, because they are redundant w.r.t. A2;

• P in both of the existential restrictions on the top-level of C∗, because it is redundant
due to the value restriction ∀r.P on the top-level of C;

• the existential restriction ∃r.Q, because it is redundant w.r.t. A1; and

• replacing Q u ¬Q by ⊥, since ⊥ is the minimal inconsistent concept description.
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The resulting concept description Ĉ = A2 uQu∃r.A1 u∃r.∀r.⊥ is equivalent to C modulo
T , i.e., Ĉ is a rewriting of C using T . Furthermore, it is easy to see that Ĉ is in fact a
minimal rewriting of C using T .

Before we can define the notion of a “reduction” formally, we must formalize the notion
of a “subdescription.”

Definition 24 The ALE concept description Ĉ is a subdescription of the ALE concept
description C iff it is equivalent to

1. Ĉ = C; or

2. Ĉ = ⊥; or

3. Ĉ is obtained from C by

• removing some (negated) primitive concept names, value restrictions, or exis-
tential restrictions on the top-level of C, and

• for all remaining value/existential restrictions ∀r.D/∃r.D replacing D by a sub-
description D̂ of D.

The subdescription Ĉ of C is a proper subdescription of C iff it is different from C.

Now, reductions can be defined as follows:

Definition 25 Let C∗ be an ALE concept description and T be an ALE TBox. The ALE
concept description Ĉ is called a reduction of C∗ w.r.t. T iff Ĉ is equivalent to C∗ w.r.t.
T and minimal in the following sense: there does not exist a proper subdescription of Ĉ

that is also equivalent to C∗ w.r.t. T .

Note that, in the definition of a reduction, we do not allow removal of defined concepts
unless they occur within value or existential restrictions that are removed as a whole. This
makes sense since such defined concepts could have been omitted in the first place when
computing the extension C∗ of C.

From the definition of a reduction, it is not immediately clear how to actually compute
one. Intuitively, a reduction Ĉ of an ALE concept C∗ in ∀-normal form is computed in a
top-down manner. If C ≡T ⊥, then Ĉ := ⊥. Otherwise, let ∀r.C ′ be the (unique!) value
restriction on the role r and A1u . . .uAn the conjunction of the names of defined concepts
on the top-level of C. Basically, Ĉ is then obtained from C∗ as follows:

1. Remove any (negated) primitive concept Q occurring on the top-level of C∗, if A1 u
. . . u An vT Q.

2. Remove any existential restriction ∃r.C1 occurring on the top-level of C∗, if

(a) A1 u . . . u An u ∀r.C ′ vT ∃r.C1, or
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(b) there is another existential restriction ∃r.C2 on the top-level of C∗ such that
A1 u . . . u An u ∀r.C ′ u ∃r.C2 vT ∃r.C1.

3. Remove the value restriction ∀r.C ′ if A1 u . . . u An vT ∀r.C ′.

4. Finally, all concept descriptions D occurring in the remaining value and existential
restrictions are reduced recursively.

The formal specification of the reduction algorithm given in [23] is more complex than
the informal description given above mainly for two reasons. First, in (2b) it could be
the case that the subsumption relation also holds if the rôles of ∃r.C1 and ∃r.C2 are
exchanged. In this case, one has a choice of which existential restriction to remove. If
the (recursive) reduction of C1 and C2 yields descriptions of different size, then we must
remove the existential restriction for the concept with the larger reduction. If, however,
the reductions are of equal size, then we must make a (don’t know) nondeterministic choice
between removing the one or the other.

Second, in (4) we cannot reduce the descriptions D without considering the context
in which they occur. The reduction of these concepts must take into account the concept
C ′ of the top-level value restriction of C as well as all concepts D′ occurring in value
restrictions of the form ∀r.D′ on the top-level of the defining concepts for A1, . . . , An. For
instance, in our example the removal of P within the existential restrictions on the top-
level of C∗ was justified by the presence of ∀r.P on the top-level of C∗. For this purpose,
the algorithm described in [23] employs a third input parameter that takes care of such
contexts.

Theorem 26 The rewriting algorithm for ALE defined in [23] has the following proper-
ties:

1. Every possible output of the algorithm is a rewriting of the input concept description
C using the input TBox T , though it need not always be minimal.

2. The set of all computed rewritings contains all minimal rewritings of C using T (mod-
ulo associativity, commutativity and idempotence of conjunction, and the equivalence
C u > ≡ C).

3. One minimal rewriting of C w.r.t. T can be computed using polynomial space.

4. The set of all minimal rewritings of C w.r.t. T can be computed in exponential time.

It practice, it often suffices to compute one (not necessarily minimal, but “small”)
rewriting. The sketch of the rewriting algorithm presented above suggests the following
greedy algorithm for computing such a small rewriting. First, compute the extension C∗ of
C in which at all positions of C all possible defined concepts are conjoined. Then compute
just one reduction Ĉ of C∗. This yields a polynomial-time algorithm—given an oracle for
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equivalence testing—which does not always return a minimal rewriting, but nevertheless
behaves well in practice, both in terms of the quality of the returned rewritings and in
terms of runtime (see [23] for more details).

7.3 Approximation

Given two DLs Ls and Ld, an Ld approximation of an Ls concept description C is an Ld

concept description D such that C v D and D is minimal (w.r.t. subsumption) in Ld with
this property.

In [42] the case where Ls is ALC and Ld is ALE was investigated in detail. It was
shown that for every ALC concept description there exists a unique (up to equivalence)
approximation in ALE . The size of the ALE approximation may grow exponentially in the
size of the given ALC concept description, and it can be computed in double exponential
time.

To measure the information that is lost by using an approximation rather than the
original concept, in [42] the notion of the difference between concepts has been refined from
an early definition by Teege [91]. Intuitively, the difference between a concept description
C and its approximation is the concept description that needs to be conjoined to the
approximation to obtain a concept description equivalent to C.

8 Matching

The matching problem has been introduced in Section 3.2. In this section, we sketch how
it can be solved. As usual, our exposition concentrates on the DL ALE . However, we
will also comment on other DLs and on extensions of the basic matching problem. Most
results presented here are based on [18, 71].

In what follows, we first consider the complexity of deciding whether a given matching
problem has a solution (Subsection 8.1). In case a matching problem has a solution, we
are also interested in computing a solution. In general, a solvable matching problem may
have several (even infinitely many) solutions. Thus, the question arises what solutions
are actually interesting ones. We try to answer this question in Subsection 8.2, where we
define a precedence orderings on matchers. This ordering tells us which matchers are more
interesting than others. Algorithms for computing such matchers in ALE are presented
in Subsection 8.3. A summary of results for matching in other DLs as well as extensions
of the basic matching problem is provided in Subsection 8.4.

8.1 Deciding Matching Problems

We study the question of how to decide whether a given matching problem has a matcher
or not, and investigate the complexity of this problem. For the DLs EL and ALE we obtain
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EL ALE

subsumption P NP-complete

equivalence NP-complete NP-complete

Table 3: Deciding the solvability of matching problems

the complexity results summarized in Table 3. The first and the second row of the table
refer to matching modulo subsumption and matching modulo equivalence, respectively.

These results can be obtained as follows: First, note that patterns are not required to
contain variables. Consequently, matching modulo subsumption (equivalence) is at least
as hard as subsumption (equivalence). Thus, NP-completeness of subsumption in ALE
[50] yields hardness in the second column of Table 3. Second, for the languages ALE and
EL, as already mentioned in Section 3.2, matching modulo subsumption can be reduced to
subsumption: C v? D has a matcher iff the substitution σ>, which replaces every variable
by >, is a matcher of C v? D. Thus, the known complexity results for subsumption in
ALE and EL [50, 22] complete the first row of Table 3. Third, NP-hardness of matching
modulo equivalence for EL can be shown by a reduction from SAT. It remains to show that
matching modulo equivalence in EL and ALE can in fact be decided in non-deterministic
polynomial time. This is an easy consequence of the following (non-trivial) lemma [71].

Lemma 27 If an EL or ALE matching problem modulo equivalence has a matcher, then it
has one of size polynomially bounded in the size of the problem. Furthermore, this matcher
uses only concept and role names already contained in the matching problem.

The lemma (together with the known complexity results for subsumption) shows that the
following can be realized in NP: “guess” a substitution satisfying the given size bound,
and then test whether it is a matcher.

8.2 Solutions of Matching Problems

As mentioned above, solvable matching problems may have infinitely many solutions.
Hence, it is necessary to define a class of “interesting” matchers to be presented to the user.
Such a definition certainly depends on the specific application in mind. Our definition is
motivated by the application in chemical process engineering mentioned before. However,
it is general enough to apply also to other applications.

We use the EL concept description C1
ex and the pattern D1

ex shown in Figure 7 to
illustrate and motivate our definitions. Along with the concept descriptions, Figure 7 also
depicts the description trees corresponding to C1

ex and D1
ex as defined in Section 4.1, where

concept variables are simply dealt with like concept names.
It is easy to see that the substitution σ> is a matcher of C1

ex v? D1
ex, and thus this

matching problem modulo subsumption is indeed solvable. However, the matcher σ> is

36



W: Woman

P: Professor

D: Doctor

hc: has-child

v0:W

v1:W v2:W, D

v3:W, D v4:W, P v5:W, P

hc

hc hc

hc

hc

C1

ex := W u ∃hc.(W u ∃hc.(W u D) u ∃hc.(W u P)) u ∃hc.(W u D u ∃hc.(W u P))

D1

ex := W u ∃hc.(X u ∃hc.(W u Y )) u ∃hc.(X u Y )

w2:X, Y

w3:W, Y

w0:W

hc

hc hc

w1:X

GC1

ex
: GD1

ex
:

Figure 7: EL concept description and pattern, and their EL description trees.

obviously not an interesting one. We are interested in matchers that bring us as close as
possible to the description C1

ex. In this sense, the matcher

σ1 := {X 7→ W u ∃hc.W, Y 7→ W}

is better than σ>, but still not optimal. In fact,

σ2 := {X 7→ W u ∃hc.W u ∃hc.(W u P), Y 7→ W u D}

is better than σ1 since it satisfies C1
ex ≡ σ2(D

1
ex) @ σ1(D

1
ex).

We formalize this intuition with the help of the following precedence ordering on match-
ers. For a given matching problem C v? D and two matchers σ, τ we define

σ vi τ iff σ(D) v τ(D).

Here “i” stands for “instance”. Two matchers σ, τ are i-equivalent (σ ≡i τ) iff σ vi τ and
τ vi σ. A matcher σ is called i-minimal iff τ vi σ implies τ ≡i σ for every matcher τ .
We are interested in computing i-minimal matchers. More precisely, we want to obtain at
least one i-minimal matcher for each of the minimal i-equivalence classes (i.e., i-equivalence
classes of i-minimal matchers). Note that, given an i-minimal matcher σ of a matching
problem C v? D, its equivalence class, i.e., the set of all matchers that are i-equivalent to
σ, consists of the matchers of the problem σ(D) ≡? D.

The matching problem
∃r.A u ∃r.B v? ∃r.X

illustrates that there may in fact be different minimal i-equivalence classes: mapping X

to A and mapping X to B, respectively, yields two i-minimal matcher which, however, do
not belong to the same i-equivalence class.
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Since an i-equivalence class usually contains more than one matcher, the question
is which ones to prefer within this class. In our running example, σ2 is a least and
therefore i-minimal matcher. Nevertheless, it is not the one we really want to compute
since it contains redundancies, i.e., expressions that are not really necessary for obtaining
the instance σ2(D

1
ex) (modulo equivalence). In fact, σ2 contains two different kinds of

redundancies. First, the existential restriction ∃hc.W in σ2(X) is redundant since removing
it still yields a concept description equivalent to σ2(X). Second, W in σ2(Y ) is redundant
in that the substitution obtained by deleting W from σ2(Y ) still yields the same instance of
D1

ex (although the resulting concept description is no longer equivalent to σ2(Y )). In our
example, the only i-minimal matcher (modulo associativity and commutativity of concept
conjunction) that is free of redundancies in this sense is

σ3 := {X 7→ W u ∃hc.(W u P), Y 7→ D}.

Summing up, we want to compute all i-minimal matchers that are reduced, i.e., free of
redundancies. We use the notion of subdescriptions introduced above (Definition 24) to
capture the notion “reduced” in a formal way. Given two matchers σ, τ of C v? D, we say
that τ is a submatcher of σ iff τ(Y ) is a (not necessarily strict) subdescription of σ(Y ) for
all variables Y . If τ is a submatcher of σ and there is at least one variable X for which
τ(X) is a strict subdescription of σ(X), then we say that τ is a strict submatcher of σ.

Definition 28 The matcher σ of C v? D is i-minimal and reduced iff

1. σ is i-minimal,

2. σ is in ∀-normal form, i.e., σ(X) is in ∀-normal form for all variables X (see
Section 7.2 for the definition of ∀-normal form), and

3. there does not exist a matcher τ of C v? D that is both i-equivalent to σ and a strict
submatcher of σ.

8.3 Computing Matchers

In the previous section, we have identified the set of all i-minimal and reduced matchers (in
∀-normal form) as the set of “interesting” matchers. We now show how these matchers can
be computed. Given a matching problem C v? D, our algorithm for computing i-minimal
and reduced matchers in principle proceeds as follows:

1. Compute the set of all i-minimal matchers of C v? D up to i-equivalence (i.e., one
matcher for each i-equivalence class).

2. For each i-minimal matcher σ computed in the first step, compute the set of all
reduced matchers in ∀-normal form up to commutativity and associativity of con-
junction for the problem σ(D) ≡? D.
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If we are interested in matching modulo equivalence instead of subsumption, we just apply
the second step to C ≡? D.

In the following two subsections, we illustrate the first step of the algorithm—computing
i-minimal matchers—for EL and ALE . For the second step, we refer the reader to [18, 71].
In particular, this step involves to show that every solvable ALE matching problem has a
matcher of size polynomially bounded in the size of the matching problem.

The main results on computing matchers shown in [18, 71] are summarized in the
following theorem. We call a set containing all i-minimal matchers up to i-equivalence
i-complete. Such a set is called minimal i-complete if it contains only i-minimal matchers.
Similarly, a set containing all reduced matchers in ∀-normal form (up to commutativity
and associativity of conjunction) is called complete w.r.t. reduction, and it is called minimal
if it contains only reduced matchers.

Theorem 29 1. For a solvable ALE or EL matching problem modulo subsumption, the
cardinality of a (minimal) i-complete set can be bounded exponentially in the size of
the matching problem. This upper bounds is tight. Furthermore, minimal i-complete
sets can be computed in exponential time in case of EL and in exponential space in
case of ALE. If minimality is not required, such a set can be computed in exponential
time also for ALE.

2. For a solvable ALE or EL matching problem modulo equivalence, the cardinality of
a (minimal) complete set w.r.t. reduction may grow exponentially in the size of the
matching problem. However, the size of the matchers in this set can polynomially be
bounded. This immediately implies that there exists an exponential time algorithm
for computing minimal complete sets w.r.t. reduction (both for ALE and EL).

8.3.1 Computing i-minimal Matchers in EL

The algorithm for computing i-minimal matchers in EL is based on the characterization
of subsumption via homomorphisms between description trees presented in Section 4.1.

Given a matching problem of the form C v? D, our algorithm computes homomor-
phisms from the description tree GD corresponding to D into the description tree GC

corresponding to C. Concept patters are turned into description trees in the obvious way,
i.e., concept variables are dealt with as concept names (see, e.g., Figure 7). When comput-
ing the homomorphisms from GD into GC , the variables in GD are ignored. For instance,
in our example, there are six homomorphisms from GD1

ex
into GC1

ex
. We will later consider

the ones mapping wi onto vi for i = 0, 1, 2, and w3 onto v3 or w3 onto v4, which we denote
by ϕ1 and ϕ2, respectively.

The complete algorithm is depicted in Figure 8. With Cϕ(v) we denote the EL concept
description that corresponds to the EL description tree rooted at the node ϕ(v) in GC . The
algorithm constructs substitutions τ such that C v τ(D), i.e., there is a homomorphism
from Gτ(D) into GC . This is achieved by first computing all homomorphisms from GD
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into GC . Assume that the node v in GD, whose label contains X, is mapped onto the
note w = ϕ(v) of GC . The idea is then to substitute X with the concept description
corresponding to the subtree of GC starting with the node w = ϕ(v), i.e., with Cϕ(v). The
remaining problem is that a variable X may occur more than once in D. Thus, we cannot
simply define τ(X) as Cϕ(v) where v is such that X occurs in the label of v. Since there
may exist several nodes v with this property, we take the least common subsumer of the
corresponding parts of C. The reason for taking the least common subsumer is that we
want to compute substitutions that are as specific as possible.

Input: EL matching problem C v? D.
Output: i-complete set C for C v? D.

C := ∅;
For all homomorphisms ϕ from
GD = (V, E, v0, `) into GC do

Define τ by τ(X) := lcs{Cϕ(v) | X ∈ `(v)}
for all variables X in D;

C := C ∪ {τ};

Figure 8: The EL matching algorithm

In our example, the homomorphism ϕ1 yields the substitution τ1:

τ1(X) := lcs{C1
ex,v1

, C1
ex,v2

} ≡ W u ∃hc.(W u P),

τ1(Y ) := lcs{C1
ex,v2

, C1
ex,v3

} ≡ W u D,

whereas ϕ2 yields the substitution τ2:

τ2(X) := lcs{C1
ex,v1

, C1
ex,v2

} ≡ W u ∃hc.(W u P),

τ2(Y ) := lcs{C1
ex,v2

, C1
ex,v4

} ≡ W.

Unlike τ1, the substitution τ2 is not i-minimal. Therefore, τ2 will be removed in a post-
processing step, which extracts a minimal i-complete set from the i-complete one. By
applying Theorem 8, the following theorem is easy to show:

Theorem 30 The algorithm described in Figure 8 always computes an i-complete set of
matchers for a given EL matching problem modulo subsumption.

8.3.2 Computing i-minimal Matchers in ALE

The idea underlying the algorithm for computing i-minimal matchers in ALE is similar
to the one for EL. Again, we apply the characterization of subsumption by homomor-
phisms (Theorem 10). One problem is that this characterization requires the subsuming
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description to be normalized.6 However, the pattern D contains variables, and hence the
normalization of σ(D) depends on what is substituted for these variables by the matcher
σ. However, this matcher is exactly what we want to compute in the first place.

Fortunately, Theorem 10 can be relaxed as follows. To characterize the subsumption
relation C v D, it is not necessary to normalize D completely. Instead of GD, which is
based on the normal form of D, it suffices to employ the tree G>

D that is obtained from the
so-called the >-normal form of D. This normal form is obtained from D by exhaustively
applying the rule ∀r.> −→ >. As an easy consequence of the proof of Theorem 10, we
obtain the following corollary:

Corollary 31 Let C, D be ALE concept descriptions. Then, C v D iff there exists a
homomorphism from G>

D to GC .

Given the ALE matching problem C v? D, the following example illustrates that it
does not suffice to consider just all homomorphisms from G>

D to GC in order to compute
an i-complete set.

Example 32 Consider the ALE matching problem C2
ex v

? D2
ex, where

C2
ex := (∃r.∀r.Q) u (∃r.∀s.P )

D2
ex := ∃r.(∀r.X u ∀s.Y ).

The description trees corresponding to C2
ex and D2

ex are depicted in Figure 9. Obviously,
σ := {X 7→ Q, Y 7→ >} and τ := {X 7→ >, Y 7→ P} are solutions of the matching
problem. However, there is no homomorphism from G>

D2
ex

into GC2
ex

. Indeed, the node w1

can be mapped either to v1 or v2. In the former case, w2 can be mapped to v3, but then
there is no way to map w3. In the latter case, w3 must be mapped to v4, but then there is
no node w2 can be mapped to.

The problem is that Corollary 31 requires the subsumer to be in >-normal form.
However, the >-normal form of the instantiated concept pattern depends on the matcher,
and thus cannot be computed in advance. Fortunately, only matchers that substitute
variables by > cause problems. Thus, the problem can be fixed by first guessing which
variables are replaced by >. Replacing these variables in D by > yields a so-called >-
patterns E. Now, instead of computing all homomorphisms from G>

D into GC , our matching
algorithm computes for all >-patterns E of D all homomorphism from G>

E into GC . With
this modification, we obtain:

Theorem 33 There is an algorithm that computes an i-complete set of matchers for a
given ALE matching problem modulo subsumption.

6Recall that, in the case of ALE , the description tree GC of a concept description C is obtained from
the normal form of C.
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r
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D2

ex
:GC2

ex
:

Figure 9: The description trees for C2
ex and D2

ex.

8.4 Matching in other DLs and Extensions of Matching

We give only a very brief overview on results for other DLs and on extensions of matching
(see also [71] for a more detailed overview).

Matching has also been considered for the DLs ALN [21], ALNS [71], and ALN with
cyclic TBoxes [71], based on the characterization of subsumption proved for these DLs.

The basic matching problem, as introduced in Section 3.2, has been extended in the
following two directions. First, matching where variables are further constrained by side
conditions of the form X v E or X @ E (where E is a concept pattern and X is a concept
variable) was first introduced in [37], and further studied in [21, 10] for the DL ALN .

Second, unification, which extends matching modulo equivalence in that both sides of
the equation may contain variables, has first been introduced in the context of DLs in
[25], and studied there for the DL FL0. It is shown there that unification is considerably
more complex than matching: even for the small DL FL0, deciding whether a given
unification problem has a solution or not is EXPTIME-complete. Later on, these results
were extended to unification in FLtrans, the extension of FL0 by transitive closure of roles
[19], and to the extension of this DL by atomic negation [20].

9 Conclusion and Future Perspectives

Compared to the large body of results for standard inferences in DLs, the investigation
of non-standard inferences is only at its beginning. Nevertheless, for the DLs ALE and
ALN and their sublanguages, we now have a relatively good understanding of how to
solve non-standard inferences like computing the least common subsumer, matching, and
rewriting. For these results to be useful in practice, two more problems must be addressed,
though.
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First, there is a need for good implementations of the algorithms developed for non-
standard inferences, which must be able to interact with existing systems implementing
standard inferences. The system Sonic [92, 93] is a first step in this direction. It extends
the ontology editor OilEd [32] by implementations of the non-standard inferences lcs and
approximation, and uses the system Racer [54] as standard reasoner. There also exist
first implementations of matching algorithms for ALE [41] and ALN [43].

Second, modern DL systems like FaCT [61] and Racer [54] are based on very expres-
sive DLs, and there exist large knowledge bases that use this expressive power and can be
processed by these systems [85, 90, 53]. In contrast, results for non-standard inferences are
currently restricted to rather inexpressive DLs, and some of these inferences do not even
make sense for more expressive DLs.7 In order to allow the user to re-use concepts defined
in such existing expressive knowledge bases and still support the user with non-standard
inferences, on can either use approximation or consider non-standard inferences w.r.t. a
background terminology.

To explain these two options in more detail, assume that L2 is an expressive DL, and
that L1 is a sublanguage of L2 for which we know how to compute non-standard inferences.
In the first case, one first computes the L1 approximation of the concepts expressed in L2,
and then applies the non-standard inferences in L1. In the second case, one considers a
background terminology T defined in L2. When defining new concepts, the user employs
only the sublanguage L1 of L2. However, in addition to primitive concepts and roles, the
concept descriptions written in the DL L1 may also contain names of concepts defined in
T . The non-standard inferences are then defined modulo the TBox T , i.e., instead of using
subsumption between L1 concept descriptions, one uses subsumption w.r.t. the TBox T .
First results for the lcs modulo background terminologies have been obtained in [30].
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[71] Ralf Küsters. Non-standard Inferences in Description Logics, volume 2100 of Lecture
Notes in Artificial Intelligence. Springer-Verlag, 2001.
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