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Previously . . .
• A proof theory for (definite) logic programs is given by SLD resolution.• A query is resolved with a (variant of a) program clause to another query.• There are choices to be made (renaming of clause, mgu of query atomand clause, selected atom in query, program clause) with consequences.• The search space can be visualized by (selection rule-induced) SLD trees.
(1) happy :- sun, holidays.
(2) happy :- snow, holidays.
(3) snow :- cold, precipitation.
(4) cold :- winter.
(5) precipitation :- holidays.
(6) winter.
(7) holidays.

| ?- happy.
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Model Theory: Algebras, Interpretations, and
Models
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Algebras (Semantics of Terms)
Definition
Let V be a set of variables, F be a ranked alphabet of function symbols.An algebra J for F (or F-algebra or pre-interpretation for F) consists of:
1. A domain, a non-empty set D;
2. the assignment of a mapping fJ : Dn → D to every f ∈ F (n) with n ≥ 0.
For f ∈ F (0), the constant function fJ : D0 → Dmaps () to some d ∈ D.
Definition
A state σ over D is a mapping σ : V → D.The extension of σ to TUF ,V by algebra J is the function σJ : TUF ,V → D suchthat for every f ∈ F (n),

σJ( f (t1, . . . , tn)) := fJ(σ(t1), . . . ,σ(tn))
For first-order logic, a state is typically called a variable assignment.
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Interpretations (Semantics of Programs)
Definition
Let F be a ranked alphabet of function symbols, Π be a ranked alphabet ofpredicate symbols.
An interpretation I for F and Π consists of :
1. An algebra J for F (with domain D);
2. the assignment of a relation

pI ⊆ D× · · · ×D︸ ︷︷ ︸
n

to every p ∈ Π(n) with n ≥ 0.
For p ∈ Π(0), we have pI ⊆ {()}, that is, either pI = ∅ (false) or pI = {()} (true).
⇝ Standard definition of first-order logic interpretations.
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Interpretations (Example)

Consider the addition program, Padd:
add(x, 0, x)←

add(x, s(y), s(z))← add(x, y, z)
I1, I2, I3, I4, I5, and I6 are interpretations for {s, 0} and {add}:
I1: DI1 = IN, 0I1 = 0, sI1 = {n 7→ n + 1 | n ∈ IN}, addI1 = {(m,n,m + n) | m,n ∈ IN}
I2: DI2 = IN, 0I2 = 0, sI2 = {n 7→ n + 1 | n ∈ IN}, addI2 = {(m,n,m ∗ n) | m,n ∈ IN}
I3: DI3 = HU{s,0}, 0I3 = 0, sI3 = {

t 7→ s(t) ∣∣ t ∈ HU{s,0}
},

addI3 = {(sm(0), sn(0), sm+n(0)) | m,n ∈ IN}
I4: DI4 = HU{s,0}, 0I4 = 0, sI4 = {

t 7→ s(t) ∣∣ t ∈ HU{s,0}
}, addI4 = ∅

I5: DI5 = HU{s,0}, 0I5 = 0, sI5 = {
t 7→ s(t) ∣∣ t ∈ HU{s,0}

}, addI5 = (HU{s,0})3
I6: DI6 = {0, 1}, 0I6 = 0, sI6 = {0 7→ 0, 1 7→ 1},

addI6 = {(m,n,m) | m,n ∈ {0, 1}}
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Logical Truth (1)
Definition
An expression E is an atom, a query, a clause, or a resultant.
Definition
Let E be an expression, I be an interpretation, σ be a state.
We say that E is true in I under σ and write I |=σ E

:⇐⇒
by case analysis on E:

I |=σ p(t1, . . . , tn) :⇐⇒ (σI(t1), . . . ,σI(tn)) ∈ pI

I |=σ A1, . . . , An :⇐⇒ I |=σ Ai for every 1 ≤ i ≤ n

I |=σ A ← B⃗ :⇐⇒ if I |=σ B⃗ then I |=σ A

I |=σ A⃗ ← B⃗ :⇐⇒ if I |=σ B⃗ then I |=σ A⃗
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Logical Truth (2)

Definition
Let E be an expression and I be an interpretation.
Furthermore, let x1, . . . , xk be the variables occuring in E.• ∀x1, . . . ,∀xk E is the universal closure of E (abbreviated ∀E)• ∃x1, . . . ,∃xk E is the existential closure of E (abbreviated ∃E)• I |= ∀E :⇐⇒ I |=σ E for every state σ
• I |= ∃E :⇐⇒ I |=σ E for some state σ
• E is true in I (or: I is amodel of E), written: I |= E :⇐⇒ I |= ∀E

⇝ Standard first-order logic definition of logical truth (for expressions).
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Logical Truth (III)
Definition
Let S and T be sets of expressions and I be an interpretation.
• I is amodel of S, written: I |= S :⇐⇒ I |= E for every E ∈ S

• T is a logical consequence of S, written: S |= T:⇐⇒ every model of S is a model of T
We sometimes refer to logical consequences as semantic consequences tostress their model-theoretic definition.
Definition
Let P be a program, Q0 be a query, and θ be a substitution.• θ|Var(Q0) is a correct answer substitution of Q0 :⇐⇒ P |= Q0θ• Q0θ is a correct instance of Q0 :⇐⇒ P |= Q0θ
⇝Model-theoretic counterparts to computed answer substitutions/instances.
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Models (Example)
Consider again Padd: add(x, 0, x)←

add(x, s(y), s(z))← add(x, y, z)
Furthermore, let I1, I2, I3, I4, I5, and I6 be the interpretations from Slide 7.
• I1 |= Padd, since I1 |=σ c for every clause c ∈ Padd and state σ : V → IN:1. (σ(x),σ(0),σ(x)) ∈ addI1 and2. if (σ(x),σ(y),σ(z)) ∈ addI1 then (σ(x),σ(y) + 1,σ(z) + 1) ∈ addI1 .• I2 ̸|= Padd:(E.g. let σ(x) = 1, then I2 ̸|=σ add(x, 0, x) since (σ(x),σ(0),σ(x)) = (1, 0, 1) /∈ addI2 .)• I3 |= Padd (like for I1; we call I3 a (least) Herbrand model)• I4 ̸|= Padd (e.g. let σ(x) = s(0), then I4 ̸|=σ add(x, 0, x) since(σ(x),σ(0),σ(x)) = (s(0), 0, s(0)) /∈addI4 )• I5 |= Padd (like for I1; we call I5 a Herbrand model)• I6 |= Padd (like for I1)
I1: DI1 = IN, 0I1 = 0, sI1 = {n 7→ n + 1 | n ∈ IN}, addI1 = {(m,n,m + n) | m,n ∈ IN}I2: DI2 = IN, 0I2 = 0, sI2 = {n 7→ n + 1 | n ∈ IN}, addI2 = {(m,n,m ∗ n) | m,n ∈ IN}I3: DI3 = HU{s,0}, 0I3 = 0, sI3 = {

t 7→ s(t) ∣∣ t ∈ HU{s,0}
},

addI3 = {(sm(0), sn(0), sm+n(0)) | m,n ∈ IN} I4: DI4 = HU{s,0}, 0I4 = 0, sI4 = {
t 7→ s(t) ∣∣ t ∈ HU{s,0}

}, addI4 = ∅I5: DI5 = HU{s,0}, 0I5 = 0, sI5 = {
t 7→ s(t) ∣∣ t ∈ HU{s,0}

}, addI5 = (HU{s,0})3I6: DI6 = {0, 1}, 0I6 = 0, sI6 = {0 7→ 0, 1 7→ 1}, addI6 = {(m,n,m) | m,n ∈ {0, 1}}
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Semantic Consequences (Example)

Consider again the addition program Padd.• Padd |= add(x, 0, x)(For every interpretation I: if I |= Padd then I |= add(x, 0, x), since
add(x, 0, x) ∈ Padd.)• Padd |= add(x, s(0), s(x))(For every interpretation I: if I |= Padd then I |= add(x, 0, x) and
I |= add(x, s(0), s(x))← add(x, 0, x) (instance of clause), thus
I |= add(x, s(0), s(x)).)

• Padd ̸|= add(0, x, x)(Consider interpretation I6 from Slide 7 with I6 |= Padd;
I6 ̸|= add(0, x, x), since e.g. I6 ̸|=σ add(0, x, x) for σ(x) = 1, since(σ(0),σ(x),σ(x)) = (0, 1, 1) /∈ addI6 .)
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Quiz: Models and Consequences

Quiz
Consider the following logic program P where only x is a variable: . . .
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Soundness of SLD Resolution

Correctness of SLD Resolution (Lecture 4)Computational Logic Group // Hannes StrassFoundations of Logic Programming, WS 2023/24 Slide 14 of 33 Computational
Logic ∴ Group



Towards Soundness of SLD Resolution (1)
Lemma 4.3 (i)
Let Q θ

c
Q′ be an SLD derivation step and Qθ← Q′ the resultant

associated with it. Then
c |= Qθ← Q

′

Proof.
Let Q = A⃗,B, C⃗ with selected atom B. Let H← B⃗ be the input clause and
Q′ = (A⃗, B⃗, C⃗)θ. Then:

c |= H← B⃗ (variant of c)
implies c |= Hθ← B⃗θ (instance)
implies c |= Bθ← B⃗θ (θ is a unifier of B and H)
implies c |= (A⃗,B, C⃗)θ← (A⃗, B⃗, C⃗)θ (“context” unchanged)
Intuitively: The resultant is a logical consequence of the program clause.
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Towards Soundness of SLD Resolution (2)
Lemma 4.3 (ii)
Let ξ be an SLD derivation of P∪ {Q0}. For i ≥ 0, let Ri be the resultant oflevel i of ξ. Then

P |= Ri

Proof.
Let ξ = Q0 θ1

c1 Q1 · · · Qn

θn+1
cn+1 Qn+1 · · · . We use induction on i ≥ 0:

i = 0: R0 = Q0 ← Q0 is equivalent to true, thus P |= R0
i = 1: R1 = Q0θ1 ← Q1; by Lemma 4.3 (i): P |= R1

i⇝ i + 1: By Lemma 4.3 (i), ci+1 |= Qiθi+1 ← Qi+1, thus P |= Qiθi+1 ← Qi+1.By (IH), P |= Ri, that is, P |= Q0θ1 · · · θi ← Qi and in particular
P |= Q0θ1 · · · θiθi+1 ← Qiθi+1. In combination,
P |= Q0θ1 · · · θiθi+1 ← Qi+1, that is, P |= Ri+1.
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Soundness of SLD Resolution

Theorem 4.4
If there exists a successful SLD derivation of P∪ {Q0} with cas θ, then

P |= Q0θ

Proof.
Let ξ = Q0 θ1 · · · θn □ be a successful SLD derivation.
Lemma 4.3 (ii) applied to the resultant of level n of ξ implies P |= Q0θ1 · · · θnand Q0θ1 · · · θn = Q0(θ1 · · · θn|Var(Q0)) = Q0θ.
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Comparison to Intuitive Meaning of Queries

Corollary 4.5
If there exists a successful SLD derivation of P∪ {Q0}, then P |= ∃Q0.
Proof.
Theorem 4.4 implies P |= Q0θ for some cas θ. Then,

P |= Q0θimplies for every interpretation I: if I |= P, then I |= Q0θimplies for every interpretation I: if I |= P, then I |= ∀(Q0θ)implies for every interpretation I: if I |= P, then I |= ∃Q0implies P |= ∃Q0
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Completeness of SLD Resolution
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Towards Completeness of SLD Resolution

To show completeness of SLD resolution we need to syntacticallycharacterize the set of semantically derivable queries.The concepts of term models and implication trees serve this purpose.
Definition
Let E be an expression and S be a set of expressions.
• inst(E) :⇐⇒ set of all instances of E
• inst(S) :⇐⇒ set of all instances of elements E ∈ S

• ground(E) :⇐⇒ set of all ground instances of E
• ground(S) :⇐⇒ set of all ground instances of elements E ∈ S
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Term Models
Definition
Let V be a set of variables, F function symbols, Π predicate symbols.
The term algebra J for F is defined as follows:
1. domain D = TUF ,V ,2. mapping fJ : (TUF ,V )n → TUF ,V assigned to every f ∈ F (n) with

fJ(t1, . . . , tn) := f (t1, . . . , tn)
Definition
A term interpretation I for F and Π consists of:
1. term algebra for F ,
2. I ⊆ TBΠ,F ,V (set of atoms that are true;equivalently: assignment of a relation pI ⊆ (TUF ,V )n to every p ∈ Π(n)).
I is a term model of a set S of expressions:⇐⇒ I term interpretation and model of S.
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Herbrand Models
Definition
The Herbrand algebra J for F is defined as follows:
1. domain D = HUF2. mapping fJ : (HUF )n → HUF assigned to every f ∈ F (n) with

fJ(t1, . . . , tn) := f (t1, . . . , tn)
Definition
A Herbrand interpretation I for F and Π consists of:
1. Herbrand algebra for F ,
2. I ⊆ HBΠ,F (set of ground atoms that are true).
I is a Herbrand model of a set S of expressions:⇐⇒ I Herbrand interpretation and model of S
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Implication Trees

Definition
T implication tree w.r.t. program P

:⇐⇒
• tree T is finite
• nodes are atoms
• if A is a node with the direct descendants B1, . . . ,Bn then

A ← B1, . . . ,Bn ∈ inst(P)
• if A is a leaf, then A← ∈ inst(P)
T ground implication tree w.r.t. program P:⇐⇒ T implication tree w.r.t. P and all nodes are ground atoms
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Implication Trees (Example)
Let Padd be the addition program, n ∈ IN, V set of variables, t ∈ TU{s,0},V .
Consider the tree T given by

add(t, sn(0), sn(t))
add(t, sn–1(0), sn–1(t))

...
add(t, s(0), s(t))
add(t, 0, t)

T is an implication tree w.r.t. Padd.If additionally t ∈ HU{s,0}, then T is a ground implication tree w.r.t. Padd.
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Implication Trees Constitute Term Models
Lemma 4.7
Consider term interpretation I, atom A, program P.
• I |= A iff inst(A) ⊆ I

• I |= P iff for every A← B1, . . . ,Bn ∈ inst(P),
{B1, . . . ,Bn} ⊆ I implies A ∈ I

Lemma 4.12
The term interpretation

C(P) := { A | A is the root of some implication tree w.r.t. P }
is a model of P.

Correctness of SLD Resolution (Lecture 4)Computational Logic Group // Hannes StrassFoundations of Logic Programming, WS 2023/24 Slide 25 of 33 Computational
Logic ∴ Group



Ground Implication Trees Constitute
Herbrand Models
Lemma 4.26
Consider Herbrand interpretation I, atom A, program P.
• I |= A iff ground(A) ⊆ I

• I |= P iff for every A← B1, . . . ,Bn ∈ ground(P),
{B1, . . . ,Bn} ⊆ I implies A ∈ I

Lemma 4.28
The Herbrand interpretation

M(P) := { A | A is the root of some ground implication tree w.r.t. P }
is a model of P.
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Constituted Models (Example)

Consider again the addition program Padd the a set V of variables.
The term interpretation

C(Padd) = {
add(t, sn(0), sn(t)) ∣∣ n ∈ IN, t ∈ TU{s,0},V

}
=

{
add(sm(v), sn(0), sn+m(v)) ∣∣ m,n ∈ IN, v ∈ V ∪ {0}}

and the Herbrand interpretation
M(Padd) = {

add(t, sn(0), sn(t)) ∣∣ n ∈ IN, t ∈ HU{s,0}
}

=
{
add(sm(0), sn(0), sn+m(0)) ∣∣ m,n ∈ IN}

are models of Padd.
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Correct vs. Computed Answer Substitutions
Consider Padd

add(x, 0, x)←
add(x, s(y), s(z))← add(x, y, z)

along with the query Q = add(u, s(0), s(u)).
• θ = {u/s2(v)} is a correct answer substitution of Q,since Padd |= Qθ = add(s2(v), s(0), s3(v)) (in analogy to Slide 12 with x = s2(v))
• SLD derivation of Padd ∪ {Q}: add(u, s(0), s(u)) θ1

(2) add(u, 0,u) θ2
(1) □with θ1 = {x/u, y/0, z/u} and θ2 = {x/u},thus η = (θ1θ2)|{u} = ε is a computed answer substitution of Q.

• We observe that η is strictly more general than θ.
• In fact, no SLD derivation of Padd ∪ {Q} can deliver θ.
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Completeness for Implication Trees (1)
Definition
Query Q is n-deep

:⇐⇒
every atom in Q is the root of an implication tree, and n is the total numberof nodes in these trees.
Example
Consider P = {p(a)←, p(c)← p(a), p(b)← p(c),p(a)}. Then the query
Q = p(b),p(c) is 6-deep, as witnessed by these implication trees:

p(b) p(c)
p(a)p(c) p(a)

p(a)
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Completeness for Implication Trees (2)
Lemma 4.15
Suppose that query Qθ is n-deep for some n ≥ 0, where θ is a correct answersubstitution of Q.
Then for every selection rule R, there exists a successful SLD derivation of
P∪ {Q} with cas η such that Qη is more general than Qθ.
Example
Consider P = {p(a)←, p(c)← p(a), p(b)← p(c),p(a)} and implication trees

p(b) p(c)
p(a)p(c) p(a)

p(a)
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Completeness of SLD Resolution (1)
Theorem 4.13
Suppose that θ is a correct answer substitution of Q.
Then for every selection rule R, there exists a successful SLD derivation of
P∪ {Q} with cas η such that Qη is more general than Qθ.
Proof.
Let Q = A1, . . . , Am. Then:

θ correct answer substitution of A1, . . . , Amimplies P |= A1θ, . . . , Amθimplies for every interpretation I: if I |= P, then I |= A1θ, . . . , Amθimplies C(P) |= A1θ, . . . , Amθ (since C(P) |= P by Lemma 4.12)implies inst(Aiθ) ⊆ C(P) for every 1 ≤ i ≤ m (by Lemma 4.7)implies Aiθ ∈ C(P) for every 1 ≤ i ≤ mimplies A1θ, . . . , Amθ is n-deep for some n ≥ 0 (by def. of C(P))implies claim (by Lemma 4.15)
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Completeness of SLD Resolution (2)

Corollary 4.16
Suppose P |= ∃Q.
Then there exists a successful SLD derivation of P∪ {Q}.
Proof.

P |= ∃Qimplies P |= Qθ for some substitution θimplies θ correct answer substitution of Qimplies claim (by Theorem 4.13)
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Conclusion
Summary
• The semantics of (definite) logic programs is given by a standardfirst-order model theory.
• SLD resolution is sound: For every successful SLD derivation of P∪ {Q0}with computed answer substitution θ, we have P |= Q0θ.• SLD resolution is complete: If θ is a correct answer substitution of Q, then

– for every selection rule– there exists a successful SLD derivation of P∪ {Q} with cas η– such that Qη is more general than Qθ.
Suggested action points:
• Compare implication trees to SLD trees
• Clarify the distinction between computed and correct answer substitutions
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