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Abstract. Abstract dialectical frameworks (ADFs) are a well-studied
generalisation of the prominent argumentation frameworks due to Phan
Minh Dung. In this paper we propose to use reduced ordered binary de-
cision diagrams (roBDDs) as a suitable representation of the acceptance
conditions of arguments within ADFs. We first show that computational
complexity of reasoning on ADFs represented by roBDDs is milder than
in the general case, with a drop of one level in the polynomial hierarchy.
Furthermore, we present a framework to systematically define heuristics
for search space exploitation, based on easily retrievable properties of
roBDDs and the recently proposed approach of weighted faceted navi-
gation for answer set programming. Finally, we present preliminary ex-
periments of an implementation of our approach showing promise both
when compared to state-of-the-art solvers and when developing heuristics
for reasoning.

Keywords: abstract dialectical frameworks · binary decision diagrams.

1 Introduction

Computational argumentation is an active research topic within the broader
field of Artificial Intelligence, which provides dialectical reasons in favour of or
against disputed claims [3]. Deeply rooted in non-monotonic reasoning and logic
programming, formal frameworks for argumentation provide the basis for hetero-
geneous application avenues, such as in legal or medical reasoning [2]. Within the
field, formalisms in so-called abstract argumentation have proven to be useful for
argumentative reasoning. Here arguments are represented as abstract entities,
and only the inter-argument relations decide argumentative acceptance, which is
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formalized via argumentation semantics. Several semantics exist, ranging from
a more skeptical to a more inclusive stance towards acceptance of arguments.

Based on the prominent approach by Dung [12], a core formal approach
to abstract argumentation are abstract dialectical frameworks [7], or ADFs for
short, which also represent arguments as abstract entities, and allow for flexible
relations between arguments, modelled as Boolean functions. Recently, ADFs
were shown to be applicable in the legal field [1], in online dialog systems [20],
and also for text exploration [9].

However, ADFs face the barrier of high complexity of reasoning [24,16], reach-
ing up to the third level of the polynomial hierarchy. To address this obstacle,
several approaches were proposed and studied: considering various fragments of
the ADF language [18], quantified Boolean formulas [11], and utilizing advanced
techniques in answer set programming [23,6].

A method for addressing high complexity, nevertheless, was not considered
so far in depth for (abstract) argumentation: knowledge compilation [10]. A key
principle behind knowledge compilation is that tasks of high complexity are
translated to formal languages where reasoning has milder complexity, while at
the same time taking possible translation performance issues into account. Ap-
plying techniques of knowledge compilation to abstract argumentation appears
natural: abstract argumentation formalisms themselves can be seen as “argu-
ment compilations” of knowledge bases, e.g., ADFs can be instantiated from
knowledge bases [22].

In this paper we take up the opportunity to fill this gap in the research land-
scape and propose to model a lingering source of complexity of ADFs, namely
that of representing acceptance conditions per argument, via the prominent lan-
guage of binary decision diagrams (BDDs) [8], with the following main contri-
butions.

– We first formally introduce ADFs whose acceptance conditions are repre-
sented via BDDs.

– We show that complexity of reasoning for ADFs represented via reduced and
ordered BDDs enjoys the same complexity (drop) as bipolar ADFs [24] or
argumentation frameworks [13], after the compilation procedure.

– The representation via BDDs opens up a different opportunity: poly-time
decidability of several tasks on BDDs allows to extract various kinds of
information from the ADF. We use a recently proposed framework [15] that
allows for exploring search spaces to arrive at a framework for developing
heuristics for reasoning in ADFs.

– We present preliminary experiments showing promise of our approach in two
directions: while at current we do not outperform the state-of-the-art ADF
solver k++ADF [18], our results suggest that (i) computing the grounded
semantics is as good via our approach than for k++ADF (including com-
pilation times) and (ii) heuristics based on our framework show promise of
performance increase.
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a φa = (a → (b ∨ ¬c)) ∧ (¬d ∨ b)

b

φb = ¬c
c

φc = b ∧ ¬d
d

φd = c

Fig. 1: Components of example ADF D1, where the node labels represent state-
ments and the attached formulae represent the respective acceptance condition.

2 Background

Abstract Dialectical Framework. We recall basics of Abstract Dialectical Frame-
works (ADFs) and refer the interested reader to the recent Handbook of Formal
Argumentation [3,7] for more details.

Definition 1. An ADF is a triple D := (S,L,C) where S is a fixed finite set
of statements; L ⊆ S × S is a set of links; and C := {φs}s∈S consists of
acceptance conditions for statements, which correspond to propositional formulas
φ ::= s ∈ S | ⊥ | ⊤ | ¬φ | (φ ∧ φ) | (φ ∨ φ) | (φ → φ) over the parents
P (s) := {s′ ∈ S | (s′, s) ∈ L} of statement s.

Since links can be determined by acceptance conditions, throughout this pa-
per we will mostly omit links and simply define ADFs as a tuple consisting of
statements and their respective acceptance conditions.

Example 1. Let D1 = ({a, b, c, d}, {(a → (b ∨ ¬c)) ∧ (¬d ∨ b),¬c, b ∧ ¬d, c}).
Figure 1 illustrates the components of D1.

The semantics of ADFs are based on three-valued interpretations. An interpre-
tation is a function I : S → {t, f ,u} that maps each statement to either t
(true), f (false) or u (undefined). An interpretation I is two-valued, denoted
by I2, if I(s) ∈ {t, f} for each s ∈ S. We define an information ordering ≤i

such that ≤i is the reflexive transitive closure of <i and u <i v for v ∈ {t, f}.
This ordering is extended to interpretations by I ′ ≤i I iff I ′(s) ≤i I(s) for each
s ∈ S, and I ′ <i I if I ′ ≤i I and for some s ∈ S we have I ′(s) <i I(s). By
φ[I] := φ[s/⊤ : I(s) = t][s/⊥ : I(s) = f ] we define the partial evaluation of φ
with respect to I.

Definition 2. Let D = (S,C) be an ADF and I be a three-valued interpreta-
tion over S. The characteristic operator ΓD(I) = I ′ is defined by the revisited
interpretation I ′ of I, such that

I ′(s) =


t if |= φs[I];

f if φs[I] |= ⊥;

u otherwise.
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We are now in position to define Dung’s standard semantics for ADFs.

Definition 3. Let D = (S,C) be an ADF. A three-valued interpretation I

– is admissible in D if I ≤i ΓD(I);
– is complete in D if I = ΓD(I);
– is grounded in D if I is the least fixed-point of ΓD;
– is preferred in D if I is ≤i-maximal admissible in D.

It is well-known that an ADF has a unique grounded interpretation. A two-
valued interpretation is called a model of D, if this interpretation is complete in
D. Stable models are defined as follows.

Definition 4. Let D = (S,C) be an ADF and I2 be a two-valued interpretation.
Define the reduced ADF DI2 := (SI2 , CI2) where SI2 := {s ∈ S | I2(s) = t} and
CI2 := {φs[s

′/⊥ : I2(s
′) = f ] | s ∈ SI2 , s′ ∈ S}. If I2 is a model of D and for the

grounded interpretation G of DI2 it holds that I2(s) = t implies G(s) = t, then
I2 is a stable model of D.

Main reasoning tasks on ADFs under a semantics σ include credulous reasoning,
i.e., asking whether there is a σ interpretation assigning a queried statement to
true, and skeptical reasoning, i.e., is it the case that all σ interpretations assign
a queried statement to true. Verification refers to the task of deciding whether
a given interpretation is a σ interpretation.

Example 2 (cont’d). The grounded interpretation of D1 is {a 7→ u, b 7→ u, c 7→
u, d 7→ u}. Note that therefore ∅ is also complete in D1. The other interpretation
complete in D1 is {a 7→ t, b 7→ f , c 7→ f , d 7→ f}. In fact, D1 has no stable models.

Reduced Ordered Binary Decision Diagram. A (reduced ordered) binary decision
diagram [8] is an efficient representation of a Boolean function. We follow the
convention of referring to reduced ordered binary decision diagrams as BDDs.

Definition 5. A binary decision diagram Bφ over variables X of a formula φ
is a rooted directed acyclic graph with two external nodes labeled with 0 or 1
and internal nodes u with two outgoing edges given by low(u) and high(u). Each
internal node u is associated with a variable x ∈ X, denoted by var(u) = x. It is
ordered, if on all paths the variables respect a linear order x1 < x2 < · · · < xn

and it is reduced if it satisfies the following two conditions:

(a) if var(u) = var(v), low(u) = low(v) and high(u) = high(v), then u = v, for
each pair of internal nodes u, v; and

(b) low(u) ̸= high(u) for each internal node u.

Define restriction Bφ[x1/v1, . . . , xn/vn] of Bφ s.t. each xi is set to vi ∈ {0, 1} by

1. redirecting incoming edges of each node u with var(u) = xi to low(u), if
vi = 0, and to high(u), if vi = 1; and

2. removing u.
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Fig. 2: BDDs of the acceptance condition φa with respect toD1: (a) with ordering
a < b < c < d; (b) with ordering b < d < a < c; and (c) which corresponds to
(b) restricted such that a is set to 1 and b is set to 0. Solid lines denote low and
dashed lines denote high.

By vars(Bφ) = {var(u0), . . . , var(um)} we denote the variables of internal nodes
of Bφ and by #Bφ := 2 ·m we denote the size of Bφ, which corresponds to the
number of edges for m internal nodes.

It is well-known [17] that reduced ordered binary decision diagrams admit each
of the following operations in time polynomial in the size of the BDD: con-
sistency check, validity check, clausal entailment check, implicant check, equiva-
lence check, sentential entailment check, model counting and model enumeration.

However, note that the ordering matters when it comes to the size of a BDD.
Figure 2 illustrates that the lexicographic ordering leads to a BDD (a) with 10
edges including two nodes labeled with b, whereas b < d < a < c leads to a
BDD (b) of size 8, including exactly one node for each variable. In fact, finding
an optimal variable ordering for ordered binary decision diagrams is an NP-hard
problem [5]. Even approximating it, is hard [21].

3 Representing ADFs as BDDs

An ADF is defined by acceptance conditions (propositional formulas) over state-
ments (propositions). Utilizing BDDs directly leads to the following definition.
See Figure 3 for a BDD representation of our running example ADF.

Definition 6. The BDD representation B(D) = (Bφs1
, . . . ,Bφsn

) of an ADF
D = (S,C) is a tuple consisting of one BDD for each acceptance condition φsi

of si ∈ S where i = 1 . . . n.

We show that complexity of reasoning on ADFs represented by BDDs coincides
with complexity results of argumentation frameworks (AFs) [12,13]. Based on
polytime procedures reducing and restricting BDDs [8], we can show a polytime
result for computing the result of the characteristic operator.

Theorem 1. Given the BDD representation B(D) of an ADF D, the result of
applying ΓD to any three-valued interpretation I can be computed in polynomial
time.
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Fig. 3: The BDD representation of D1 using lexicographic ordering.

Further, by previous results [24, Theorem 3.18], we obtain several upper bounds
directly for ADFs represented by BDDs.

Theorem 2. Given an ADF D represented by B(D), it holds that

– verification under admissibility and complete semantics is in P,
– credulous reasoning under admissibility, complete, and preferred semantics

is in NP;
– verification under preferred semantics is in coNP;
– and skeptical reasoning under preferred semantics is in ΠP

2 .

Stable and grounded semantics are not covered by the corresponding theo-
rem [24], nevertheless complexity exhibits a drop, as well. We first deal with
grounded semantics, as an ingredient for stable semantics.

Theorem 3. Given an ADF D represented by B(D), there is a polynomial al-
gorithm that computes the grounded interpretation of D.

Based on this result, it follows that verifying whether a model of an ADF repre-
sented by BDDs is stable is in P, and credulous and skeptical reasoning lies on
the first level of the polynomial hierarchy, since all checks regarding the reduct
are then polytime. For both credulous and skeptical reasoning, the membership
results hold via a direct non-deterministic guess of an interpretation.

Corollary 1. Verifying whether a three-valued interpretation is a model or is
stable in an ADF represented by BDDs is in P. Moreover, credulous reasoning
is in NP and skeptical reasoning in coNP.

Regarding hardness, one can directly utilize hardness results for AFs (see [13]
for an overview), since one can translate a given AF directly (in polytime) to
an ADF under the BDD representation. Thus, credulous reasoning under admis-
sible, complete, stable, and preferred semantics is NP-complete, verification of
preferred interpretations is coNP-complete, and skeptical reasoning under stable
is coNP-complete and ΠP

2 -complete for preferred semantics.
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4 Search Space Exploitation: Profiting from BDDs

Fichte et al. [15] define a navigation framework for answer set programming
(ASP) [19], called weighted faceted navigation, that allows for quantifying the
effect of navigation steps in a search space. So far it has been used to explore
solution spaces, we utilize it to exploit information provided by a search space.

The idea is to navigate the search space (the set of interpretations) via heuris-
tics that weight decisions (assigning truth values to statements). A decision,
called here facet, is either inclusive (assigning true, denoted by +s) or exclusive
(assigning false, denoted by −s). We use symbols + and − to distinguish true
and false. A route is then an iteratively extended sequence of such facets (with
the possibility of backtracking). That is, a route can be seen as a partial (two-
valued) assignment on the statements, together with a partial evaluation of each
acceptance condition under this partial assignment (like φ[I] for a partial I).
Weight functions then indicate heuristic goals, by assigning weights to facets,
given a current route (current partial assignment). To make use of strengths of
BDDs, we can include weights that are hard to compute on general formulas, but
tractable on BDDs (such as number of models). We formalize these ingredients
next into a generic framework for designing heuristics on ADFs represented by
BDDs. We first define facets formally. The intuition behind a statement s being
a facet is that it is contained in the variables of at least one BDD.

Definition 7. We define facets of D = (S,C) by F(D) = F(D)+ ∪ F(D)−

where F(D)+ = {+s | s ∈
⋃

B∈B(D) vars(B)} denotes inclusive facets and

F(D)− = {−s | s ∈
⋃

B∈B(D) vars(B)} denotes exclusive facets.

In ADFs with acceptance conditions represented via Boolean formulas, state-
ments inside acceptance conditions might have no effect. For instance for ϕa =
(b∨¬b)∧c it follows that the status of b is irrelevant for acceptance of a (formally
in ADFs such links are called redundant). Reduced BDDs directly take care of
such forms of redundancy, which leads to a simple observation: utilizing BDDs
(for faceted navigation) reduces statements to consider. Formally, a navigation
step towards facet f ∈ {+s,−s} ⊆ F(D) over an ADF D means that we modify
B(D) with respect to f , denoted by B(D)[f ], by applying a restriction to each
BDD of the BDD representation B(D) of D s.t.

B(D)[f ] :=

{
(Bφs1

[s/1], . . . ,Bφsn
[s/1]), if f = +s;

(Bφs1
[s/0], . . . ,Bφsn

[s/0]), if f = −s.

We define a route δ := ⟨f1, . . . , fn⟩ as a finite sequence of facets fi ∈ F(D)
denoting n arbitrary navigation steps over D. We assume that such a route does
not contain complementary facets. By ∆D we denote all possible routes over D.
We define B(D)δ = B(D)[f1] . . . [fn], which means that B(D) is first restricted
by f1, then B(D)[f1] is restricted by f2 and so on. For simplicity, we write Dδ

to denote the restriction B(D)δ.

Example 3 (cont’d). Suppose we activate +c ∈ F(D1), then F(D
⟨+c⟩
1 ) = F(D1)\

{+c,−c}. Proceeding by activating −b ∈ F(D
⟨+c⟩
1 ), we obtain F(D

⟨+c,−b⟩
1 ) = ∅.
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That is, we “choose” to assign c true and b false, and iteratively shrink the
remaining search space (available facets).

To make decisions during search, we need to make sense of the search space. The
weight of a facet f is a parameter that quantifies what kind of effect activating
f has on the search space.

Definition 8. Let D = (S,C), δ ∈ ∆D and f ∈ F(Dδ). The weight of f is a
function ω : F(Dδ)×∆D → N.

That is, ω(f, δ) gives a weight of a facet (a potential next decision) with respect
to a current route δ. In the following, we introduce several weights.

Definition 9. Let D = (S,C), δ ∈ ∆D, f ∈ F(Dδ) correspond to s ∈ S and
Bφs ∈ B(D)δ. We define the following weights

– ωM (f, δ) := |M(φs)| if f = +s, otherwise ωM (f, δ) := n − |M(φs)| where
M(φs) denotes models of φs and n := 2|vars(Bφs )| (model-counting weight)

– ωAI (f, δ) := |{B ∈ B(Dδ) | s ∈ vars(B)}| (active impact weight)
– ωPI (f, δ) := |vars(Bφs

)| (passive impact weight)
– ωP (f, δ) is the number of paths leading to 1 (resp. 0) in Bφs

, if f = +s (resp.
f = −s) (path-counting weight)

– ωMD(f, δ) is the length of the largest simple path in Bφs
(max-depth

weight)

Each of the introduced weights refers to a value that can be computed in poly-
nomial time using the BDD representation. Every weight tries to approximate
information about the search space of each BDD in the ADF. The most obvious
one is the model-counting weight, which counts how many models exist and is
completely based on semantics notions. A bit more exact is the path-counting
weight, by considering the semantics notions as well as the representation in BDD
structures. The max-depth is a bit more exotic, as it computes the maximum
length of the given BDD. Intuitively, this is a measurement on the maximum
number of variables needed to decide the truth value of the BDD, and allows
one to approximate how many additional values are required to be decided in
order to ensure that the BDD represents a truth constant. Passive impact weight
follows the same idea, but only allows one to see how many variables will have
an impact on the BDD over all possible paths in the BDD. The active impact
weight has the same idea as max-depth and the passive impact weight, but op-
erates on a more global estimation by computing how many other BDDs might
be impacted by the chosen facet.

Navigation-based heuristics, as introduced next, use weights for computing
semantics. In a preliminary analysis we focus on enumerating stable interpreta-
tions. As computing stable models relies on finding two-valued models, here the
objective is to use weights in order to find facets (make decisions) that ease the
search for two-valued models using the characteristic operator ΓD.

Similar to the notion of navigation modes in previous works [15], we are in-
terested in minimal and maximal weighted facets of an ADF Dδ with respect
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Table 1: Facet weights of D1 on the empty route ⟨⟩.
+a +b +c +d −a −b −c −d

ωM 11 1 1 1 5 1 3 1
ωAI 1 2 3 2 1 2 3 2
ωPI 4 1 2 1 4 1 2 1
ωP 4 1 1 1 3 1 2 1
ωMD 4 1 1 2 4 1 1 2

to weight ω as defined by minω(D
δ) := {f ∈ F(Dδ) | ∀f ′ ∈ F(Dδ) : ω(f, δ) ≤

ω(f ′, δ)} and maxω(D
δ) := {f ∈ F(Dδ) | ∀f ′ ∈ F(Dδ) : ω(f, δ) ≥ ω(f ′, δ)}.

That is, we rank facets according to maximum (minimum) weight (given the
current route). A navigation-based heuristic h suggests a set of facets to activate
on the current route, by recursively determining minimal or maximal weighted
facets in a given order with respect to specified weights. For a given ADF, a
heuristic is determined by a current route and a list of weighting functions, to
flexibly allow that decision shall be reached according to prioritized weight func-
tions. For instance, Ω = ⟨maxωM

,minωPI
⟩ specifies that facets shall be ordered

by considering maximally ωM (highest priority) and, in case of equal ranking,
consider minimizing ωPI (second-level priority).

Definition 10. Let D = (S,C) be an ADF. A ranking Ω = ⟨m1, . . . ,mn⟩ is
a sequence with mi ∈ {minω0 , . . . ,minωk

,maxωk+1
, . . . ,maxωℓ

} and weights ωj

for j = 0 . . . ℓ. A navigation-based heuristic is a function

h(Ω,F(Dδ)) := mn(mn−1(· · · (m2(m1(D
δ))) · · · )).

A heuristic is essentially defined by Ω, which specifies preferences of minimal
or maximal weighted facets. Aiming at enumerating stable models, we con-
ducted experiments using two heuristics h0 and h1, which should add intel-
ligence to the search for two-valued models using BDDs as described by Al-
gorithm 1. Heuristics h0, h1 are defined by Ω0 = ⟨maxωPI

,minωAI
,minωP

⟩
and Ω1 = ⟨minωP

,maxωPI
⟩, respectively. The intuition behind Ω0 is to find

those statements, which have the highest impact on the BDDs, with a small
amount of own variables and view choices in reaching a specific truth value. Ω1

represents the approach to reduce the possible choices in one BDD to reach a
specific truth value and maximises the impact on other BDDs afterwards. If the
heuristic does not find a unique best option, we follow the BDD ordering.

Example 4 (cont’d). Applying rankings Ω0 and Ω1 on the data illustrated in
Table 1, we see that heuristic h0 suggests facets {−a}, since maxωPI (F(D1)) =
{+a,−a}, minωAI

({+a,−a}) = {+a,−a} and finally minωP
({+a,−a}) = {−a}

for D1 on the empty route. However, heuristic h1 suggests to activate facet +c,
since h1 first considers minωP

(F(D1)) = {+b,−b,+c,+d,−d} and afterwards
maxωPI ({+b,−b,+c,+d,−d}) = {+c}.

The recursive Algorithm 1 uses a specified heuristic (such as Ω0 and Ω1), an
ADF in BDD representation and an empty set of nogoods. If one of the nogoods
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Algorithm 1 Recursively Enumerating Two-valued Models

Procedure: models
In: BDD representation B(Dδ); set of nogoods F ⊆ F(D); heuristic Ω
Out: two-valued models of D;

1: set the set of two-valued models M := ∅;
2: if f ′ = +s (resp. f ′ = −s) implies ̸|= φs (resp. φs ̸|= ⊥) for each f ′ ∈ F
3: if F(Dδ) ̸= ∅ then choose a facet f ∈ h(Ω,F(Dδ)) and activate f on δ
4: traverse routes δ′ ∈ ∆(Dδ)

5: set B′ to the BDD that corresponds to s in B(Dδ′)

6: update B(Dδ′) to obtain B′′(Dδ′) where
7: B′ is set to ⊤, if f = +s, otherwise B′ is set to ⊥
8: set M := M∪ models(B′′(Dδ′), F , Ω);
9: add the inverse facet f of f to nogoods F and activate f on δ
10: set M := M∪ models(B(Dδ), F , Ω);
11: else return {{s ∈ S | C ∈ Dδ, C = ⊤, S ∈ D}}
12: return M

is violated by the current state of the BDDs, we cannot find a two valued model
with the given nogoods (Line 2 and 12). Otherwise we choose and activate a
facet, based on the given heuristic. In Line 4 we now identify all interpretations
of the BDD, which correspond to the activated facet value. The following four
lines then propagate the truth values of one of these interpretations to all other
BDDs and reduce the facet corresponding BDD to be only ⊤ (resp. ⊥) and go one
step down in the recursion by using this new BDD representation as the updated
input. After the propagation of each of the corresponding interpretations, we can
now deduce by tertium non datur that the truth value of the chosen facet needs
to be its inverse. Therefore we now assume the inverse and add the chosen facet
as a nogood. This will allow to go down the recursion depth on Line 10 with the
updated nogoods. Finally in Line 11 we see that no further facet can be chosen,
therefore all BDDs are either ⊤ or ⊥ and we have found a two-valued model.
Afterwards a simple stability check for the two valued models can be done.

5 Preliminary Experiments

We have implemented the presented ideas as a tool, called adf-bdd. It stands for
“Abstract Dialectical Frameworks solved by Binary Decision Diagrams, devel-
oped in Dresden”. The tool allows one to compute the grounded, complete, and
stable models of a given ADF. We support the currently prevalent input format
for ADFs [14]. Due to this choice of compatibility we need to note that all pre-
sented tests have transformed the given acceptance conditions into roBDDs. In
a nutshell, the system allows the use of two different BDD libraries, a state of
the art competitive library by the Biodivine tool [4] and our own implemen-
tation. Our own implementation can compute all of the previously introduced
weights and has more efficient computations of backtracking, as well as a data
structure which allows to exploit the common signature of all acceptance condi-



Representing ADFs with BDDs 11

Fig. 4: Experiments on the mean run-times (seconds) of various solvers.

tions and similar properties of BDDs and ADFs. Biodivine is more efficient in
the instantiation, so we provide a combined approach too.

For the implementation we have a deterministic and straight forward ap-
proach for the grounded semantics, which computes the least fixed point of the
ΓD operator. The complete semantics are handled by a naive approach, where all
possible three valued interpretations are constructed in a lazily evaluated list and
are checked by applying relational operations on the corresponding roBDDs.
Stable semantics have been implemented in a similar naive way as well as with
the proposed Algorithm 1 and the two discussed heuristics. Note that we do not
exploit different variable orders so far and that we use the occurrence order of
statements from the input file as the only used variable order.

We have chosen to compare our approach4 with the currently fastest solver
k++adf [18](version 2021-03-31), goDiamond [23] (version goDiamond 2017-
06-26), and yadf [6](version 0.1.1). The latter two tools are using answer set solv-
ing (ASP) to solve the computational problems. The test machine specifications
are as follows: An Intel Xeon E5-2637v4 Quadcore 64bit Processor with 3.7GHz
frequency, 384 GB working memory, running a Debian 9.13 Linux, with exclusive
computation time for the tests. Note that none of the tools used an excessive
amount of the provided memory and has been capped by CPU-performance. Due
to the very different running times of the tools, we have chosen to use hyperfine
as a benchmarking tool harness. The tool decided how many runs shall be done
to reduce the load bias and provided mean performance times over up to 900
runs per test-feature. Therefore all times are the mean run-times of all runs per
instance for each tool. In addition we imposed a ten second time-out limit for all
the computations. We have seen in preliminary tests that the behaviour on the
timeout-count does not derivate noticeable with a twenty seconds time limit. As

4 https://github.com/ellmau/adf-obdd/releases/tag/v0.2.4-beta.1 v0.2.4-beta.1

https://github.com/ellmau/adf-obdd/releases/tag/v0.2.4-beta.1
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the test cases, we have chosen the already multiple times used benchmarking set
of 600 instances, already used by yadf and k++adf. Due to text limitations
we need to keep this analysis short, full evaluations and references of the data
and the datasets can be found at https://doi.org/10.5281/zenodo.6498235.

We summarize our results in Figure 4. Note that a missing tool indicates it
does not support that semantics. For the grounded semantics our tool competes
with k++adf, suggesting that the BDD representation does not present a sig-
nificant barrier for the considered instances (BDD compilation time is included
in running times). The computation of the complete semantics shows that the
naive approach is already as good as the ASP based goDiamond. For the sta-
ble models we see that our approach is better than the ASP based yadf, while
there is still a gap towards k++adf. Regarding heuristics, our results suggest
that use of the two heuristics improved overall performance, suggesting that the
heuristics improved search space navigation.

6 Conclusions

In this work we proposed to utilize knowledge compilation in the form of BDDs
for the abstract argumentation formalism of ADFs. After showing milder com-
plexity after the compilation process, we proceeded to present a generic frame-
work for devising heuristics using the recently proposed framework of faceted
navigation, which makes use of features (weights) that are computationally hard
to obtain on Boolean formulas, but direct to retrieve from BDDs. Our prelimi-
nary experiments suggest that heuristics arising from the framework can indeed
be help in the search space navigation, but cannot compete with the current
state-of-the-art SAT-based approach of k++adf. This latter solver is based on
a candidate generation and subsequent verification procedure. Combining heuris-
tics for search space navigation using BDDs and the SAT-based approach appear
intriguing: potentially one could combine interesting heuristics on argumentation
problems together with advanced SAT techniques.
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