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Tableau Algorithm for ALC Concepts and
TBoxes

® check satisfiability of C by constructing an abstraction of a model Z such
that CT #£ ()
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Tableau Algorithm for ALC Concepts and
TBoxes

® check satisfiability of C by constructing an abstraction of a model Z such
that CT #£ ()

® concepts in negation normal form (NNF) ~~ makes rules simpler
® tableau (model abstraction) corresponds to a graph/tree G = (V,E, L)
® initialize G with a node v such that L(v) = {C}
® extend G by applying tableau rules
— L-rule non-deterministic (we guess)
® tableau branch closed if G contains an atomic contradiction (clash)

® tableau construction successful, if no further rules are applicable and
there is no contradiction

® (s satisfiable iff there is a successful tableau construction
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Treatment of Knowledge Bases

we condense the TBox into one concept:
for T = {Ci C D; | 1<i< n}, Cr = NNF(H]SiSn -G |_|D,')

we extend the rules of the ALC tableau algorithm:

T-rule: for an arbitrary v € V with C ¢ L(v),
let L(v) :== L(v) U{Ct}.
in order to take an ABox .A into account, initialize G such that
® V contains a node v, for every individual a in A
® L(vq) ={C|C(a) € A}
® (v4,v) € Eiff r(a,b) € A
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Extensions of the Logic

® plus inverses (ALCZ): inverse roles in edge labels, definition and use of
r-neighbors instead of r-successors in tableau rules

® plus functional roles (ALCZF): merging of nodes to account for
functionality
blocking guarantees termination:
® ALC subset-blocking
® plus inverses (ALCZ): equality blocking
® plus functional roles (ALCZF): pairwise blocking

TU Dresden Deduction Systems
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Unfolding

® 7T-rule is not necessary if 7 is unfoldable, i.e., every axiom is:
— definitorial: form A C C or A = C for A a concept name
(A= Ccorrespondsto A C Cand C C A)
— acyclic: C uses A neither directly nor indirectly
— unique: only one such axiom exists for every concept name A
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Unfolding

® 7T-rule is not necessary if 7 is unfoldable, i.e., every axiom is:

— definitorial: form A C C or A = C for A a concept name
(A= Ccorrespondsto A C Cand C C A)
— acyclic: C uses A neither directly nor indirectly
— unique: only one such axiom exists for every concept name A

e [f 7 is unfoldable, the TBox can be (unfolded) into a concept

TU Dresden Deduction Systems
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Unfolding Example
® \We check satisfiability of A w.r.t. the TBox 7
T:
ACBMN3r.C

B=CuUD
CLC 3rD
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A
~ AMBM3r.C
~ AT (CUD)M3r.C

T:
ACBM3rC
B=CUD
CC 3rD
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T
A ACBM3rC
~ ANBNIr.C B=CUD
~ AT (CUD)M3r.C CC3rD

~ AN ((CN3r.D)UD)NIr.(CM3r.D)
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Unfolding Example

® \We check satisfiability of A w.r.t. the TBox 7

T
A ACBM3rC
~ AMBM3r.C B=CUD
~ AT (CUD)M3r.C CC3rD

~ AN ((CN3r.D)UD)NIr.(CM3r.D)

® A is satisfiable w.r.t. 7 iff
AN ((Cn3rD)uD)N3Ir.(CMN3r.D)
is satisfiable w.r.t. the empty TBox
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Tableau Algorithm Example with Unfolding

We obtain the following contradiction-free tableau for the satisfiability of
U=AnN((CN3r.D)L D) 3r.(CM3r.D):

L(vo) = {U,A,(CN3r.D)UD,

Vo
3r.(CM3r.D),CM3r.D,
r P C,3r.D}
L(vi) ={Cn3r.D,C,3r.D}
V2

L(v) = {D)
, L(vs) = {D)

Vi

V3
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Tableau Algorithm Example with Unfolding

We obtain the following contradiction-free tableau for the satisfiability of
U=AnN((CN3r.D)L D) 3r.(CM3r.D):

L(vo) = {U,A,(CN3r.D)UD,

Vo
3r.(CM3r.D),CM3r.D,
r P C,3r.D}
L(vi) ={Cn3r.D,C,3r.D}
Vi V2

L(v) = {D}
, L(vs) = {D}

V3
Only one disjunctive decision left!
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Lazy Unfolding

® computation of NNF together with unfolding may decrease performance,
e.g.:
— satisfiability of Cmm =C w.r.t. T = {C C AN B}
— unfolding: CMMAM BN —=(CMAMB)
— NNF + unfolding: CMMATI B (=C LI —A LI =B)
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Lazy Unfolding

® computation of NNF together with unfolding may decrease performance,
e.g.:
— satisfiability of Cmm =C w.r.t. T = {C C AN B}
— unfolding: CMMAM BN —=(CMAMB)
— NNF + unfolding: CMMATI B (=C LI —A LI =B)

® better: apply NNF and unfolding if needed, via corresponding tableau
rules:

- A=C~ALCCandAC

C-rule: Forve VsuchthatAC Ce 7,A € L(v)and C ¢ L(v)
let L(v) :== L(v) UC.

J-rule: Forve VsuchthatA JCe T,-A € L(v)and =C ¢ L(v)
let L(v) := L(v) U {~C}.

—-rule: Forv € V such that ~C € L(v) and NNF(=C) ¢ L(v),
let L(v) := L(v) U {NNF(=C)}.

TU Dresden Deduction Systems
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Absorption

® What if 7 is not unfoldable?

— Separate T into 7, (unfoldable part) and 7, (GCls, not unfoldable)
— T is treated via C- and J-rules
— 7, is treated via the T-rule
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Absorption

® What if 7 is not unfoldable?
— Separate T into 7, (unfoldable part) and 7, (GCls, not unfoldable)
— 7. is treated via C- and J-rules
— 7, is treated via the T-rule
® absorption decreases 7, and increases 7,
take an axiom from 7g, e.g., AMIBLC C
transform the axiom: A C C LU —B
if 7, contains an axiom of the formA =D (A C Dand D J A),
then A C C U —B cannot be absorbed;
A C CU-Bremainsin T,
e otherwise, if 7, contains an axiom of the form A C D,
then absorb A T C LI =B resultingin A T DM (C U —B)
© otherwise move AC CU-Bto 7,
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Absorption

® What if 7 is not unfoldable?
— Separate T into 7, (unfoldable part) and 7, (GCls, not unfoldable)
— 7. is treated via C- and J-rules
— 7, is treated via the T-rule
® absorption decreases 7, and increases 7,
take an axiom from 7g, e.g., AMIBLC C
transform the axiom: A C C LU —B
if 7, contains an axiom of the formA =D (A C Dand D J A),
then A C C U —B cannot be absorbed;
A C CU-Bremainsin T,
e otherwise, if 7, contains an axiom of the form A C D,
then absorb A T C LI =B resultingin A T DM (C U —B)
© otherwise move AC CU-Bto 7,

® |[f A= D e Ty, try rewriting/absorption with other axioms in 7,
® nondeterministic: B C C U —A also possible

TU Dresden Deduction Systems
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Dependency-Directed Backtracking

® despite those optimizations, search space often to big
® letve Vwith(C,uD)N...N(C,UD,)M3r.mAMNVYr.A € L(v)
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Dependency-Directed Backtracking

® despite those optimizations, search space often to big
® letve Vwith(C,uD)N...N(C,UD,)M3r.mAMNVYr.A € L(v)

v M-rule L(v) := L(v)U{(CiUD),...,(CiUDy),
Ir.-A,Vr.A}
U-rule L(v) := L()U{Ci}
U-rule  L(v) := L(v)U{C:}
TU Dresden
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Dependency-Directed Backtracking

® despite those optimizations, search space often to big
® letve Vwith(C,uD)N...N(C,UD,)M3r.mAMNVYr.A € L(v)

v M-rule L(v) := L(v)U{(CiUD),...,(CiUDy),
Ir.-A,Vr.A}
U-rule L(v) := L()U{Ci}
- . . .
U-rule  L(v) := L(v)U{C:}
w F-rule  Lw) = {-4}
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Dependency-Directed Backtracking

® despite those optimizations, search space often to big
® letve Vwith(C,uD)N...N(C,UD,)M3r.mAMNVYr.A € L(v)

v M-rule L(v) := L(v)U{(CiUD),...,(CiUDy),
Ir.-A,Vr.A}
U-rule L(v) := L()U{Ci}
- . . .
U-rule  L(v) = L(v)U{Cu}
w F-rule  Lw) = {-A}
V-rule  L(w) := {-A,A} clash
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Dependency-Directed Backtracking

® despite those optimizations, search space often to big
® letve Vwith(C,uD)N...N(C,UD,)M3r.mAMNVYr.A € L(v)

v M-rule L(v) := L(v)U{(CiUD),...,(CiUDy),
Ir.-A,Vr.A}

U-rule L(v) := L()U{Ci}
= L n
;: {= ash
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Dependency-Directed Backtracking

® despite those optimizations, search space often to big
® letve Vwith(C,uD)N...N(C,UD,)M3r.mAMNVYr.A € L(v)

v M-rule L(v) = L) U{(CiUDi),...,(C,UD,),
Ir.-A,Vr.A}
U-rule L(v) := L()U{Ci}
= L 0
; {= ash
U-rule L(v) := L(v)U{D,}
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Dependency-Directed Backtracking

® despite those optimizations, search space often to big
® letve Vwith(C,uD)N...N(C,UD,)M3r.mAMNVYr.A € L(v)

v M-rule L(v) := L(v)U{(CiUD),...,(CiUDy),
Ir.-A,Vr.A}
U-rule L(v) := L()U{Ci}
- . . .

= L 0
; {= ash

U-rule L(v) := L(v)U{D,}

F-rule  Lw) = {-A}
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® letve Vwith(C,uD)N...N(C,UD,)M3r.mAMNVYr.A € L(v)

v M-rule L(v) := L(v)U{(CiUD),...,(CiUDy),
Ir.-A,Vr.A}
U-rule L(v) := L()U{Ci}
- . . .
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Dependency-Directed Backtracking

® despite those optimizations, search space often to big
® letve Vwith(C,uD)N...N(C,UD,)M3r.mAMNVYr.A € L(v)

v M-rule L(v) := L(v)U{(CiUD),...,(CiUDy),
Ir.-A,Vr.A}
U-rule L(v) = L(v)U{C}
- .

= L 0
:; {= ash

U-rule L(v) := L(v)U{D,}

F-rule  Lw) = {-A}

V-rule  L(w) := {-A,A} clash

® exponentially big search space is traversed

TU Dresden Deduction Systems
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Dependency-Directed Backtracking

® goal: recognize bad branching decisions quickly and do not repeat them
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® goal: recognize bad branching decisions quickly and do not repeat them
® most frequently used: backjumping
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Dependency-Directed Backtracking

® goal: recognize bad branching decisions quickly and do not repeat them
® most frequently used: backjumping
® backjumping works roughly as follows:
— concepts in the node label are tagged with a set of integers
(dependency set) allowing to identify the concept’s “origin”
— initially, all concepts are tagged with ()
— tableau rules combine and extend these tags
— U-rule adds the tag {d} to the existing tag, where d is the LI-depth
(number of LI-rules applied by now)
— when encountering a contradiction, the labels alow to identify the
origin of the concepts causing the contradiction
— jump back to the last relevant application of a LI-rule
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Dependency-Directed Backtracking

® goal: recognize bad branching decisions quickly and do not repeat them
® most frequently used: backjumping
® backjumping works roughly as follows:

concepts in the node label are tagged with a set of integers
(dependency set) allowing to identify the concept’s “origin”
initially, all concepts are tagged with

tableau rules combine and extend these tags

L-rule adds the tag {d} to the existing tag, where d is the LI-depth
(number of LI-rules applied by now)

when encountering a contradiction, the labels alow to identify the
origin of the concepts causing the contradiction

jump back to the last relevant application of a LI-rule

® irrelevant part of the search space is not considered

TU Dresden
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Dependency-Directed Backtracking
Example

(C;ubD)M...N(C,UD,)N3Ir.—ANVr.A € L(v) tagged with
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Dependency-Directed Backtracking
Example

(CGiuD)N...N(C,uD,)N3Ir—ANVr.A e L(v) tagged with 0

v M-rule L(v) := L)U{(CiUD),...,(CiUDy),
Ir.—A,Vr.A} all with ¢
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Dependency-Directed Backtracking
Example

(CGiuD)N...N(C,uD,)N3Ir—ANVr.A e L(v) tagged with 0

v M-rule L(v) := L)U{(CiUD),...,(CiUDy),
Ir.—A,Vr.A} all with ¢
U-rule L(v) := L(v)U{C} C, tagged with {1}
U-rule L(v) = L(v)U{Cu} C, tagged with {n}
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Dependency-Directed Backtracking
Example

(CGiuD)N...N(C,uD,)N3Ir—ANVr.A e L(v) tagged with 0

v M-rule L(v) := L)U{(CiUD),...,(CiUDy),
Ir.—A,Vr.A} all with ¢
U-rule L(v) := L(v)U{C} C, tagged with {1}
- .
U-rule L(v) = L(v)U{Cu} C, tagged with {n}
w J-rule  Lw) = {-A} A, r tagged with ()
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Dependency-Directed Backtracking
Example

(CGiuD)N...N(C,uD,)N3Ir—ANVr.A e L(v) tagged with 0

v M-rule L(v) := L)U{(CiUD),...,(CiUDy),
Ir.—A,Vr.A} all with ¢
U-rule L(v) := L(v)U{C} C, tagged with {1}
- .
U-rule L(v) = L(v)U{Cu} C, tagged with {n}
w J-rule  Lw) = {-A} A, r tagged with ()
V-rule  L(w) = {-4,A} —A tagged with mit ¢

TU Dresden Deduction Systems



TECHNISCHE
@ UNIVERSITAT
DRESDEN

Dependency-Directed Backtracking
Example

(CGiuD)N...N(C,uD,)N3Ir—ANVr.A e L(v) tagged with 0

v M-rule L(v) := L)U{(CiUD),...,(CiUDy),
Ir.—A,Vr.A} all with ¢
U-rule L(v) := L(v)U{C} C, tagged with {1}
- .
U-rule L(v) = L(v)U{Cu} C, tagged with {n}
w J-rule  Lw) = {-A} A, r tagged with ()

V-rule  L(w) : {—-A,A} clash —A tagged with mit ¢
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Dependency-Directed Backtracking
Example

(CGiuD)N...N(C,uD,)N3Ir—ANVr.A e L(v) tagged with 0

v M-rule L(v) := L)U{(CiUD),...,(CiUDy),
Ir.—A,Vr.A} all with ¢
U-rule L(v) := L(v)U{C} C, tagged with {1}
- :
U-rule L(v) := L(v)U{Cu} C, tagged with {n}
w J-rule  Lw) = {-A} A, r tagged with ()
V-rule  L(w) := {-A4,A} clash —A tagged with mit ¢

® tag(A) Utag(—-A) =10
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Dependency-Directed Backtracking
Example

(CGiuD)N...N(C,uD,)N3Ir—ANVr.A e L(v) tagged with 0

v M-rule L(v) := L)U{(CiUD),...,(CiUDy),
Ir.—A,Vr.A} all with ¢
U-rule L(v) := L(v)U{Ci} C, tagged with {1}
- :
U-rule L(v) := L(v)U{Cu} C, tagged with {n}
w J-rule  Lw) = {-A} A, r tagged with ()
V-rule  L(w) := {-A4,A} clash —A tagged with mit ¢

® tag(A) Utag(—-A) =10
® None of the U-rules has contributed to the cotradiction
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Dependency-Directed Backtracking
Example

(CGiuD)N...N(C,uD,)N3Ir—ANVr.A e L(v) tagged with 0

v M-rule L(v) := L)U{(CiUD),...,(CiUDy),
Ir.—A,Vr.A} all with ¢
U-rule L(v) := L(v)U{Ci} C, tagged with {1}
- .
U-rule L(v) := L(v)U{Cu} C, tagged with {n}
w J-rule  Lw) = {-A} A, r tagged with ()
V-rule  L(w) := {-A4,A} clash —A tagged with mit ¢

® tag(A) Utag(—-A) =10
® None of the U-rules has contributed to the cotradiction
® OQutput false (unsatisfiable)
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Further Optimizations

® Simplification and Normalization

— quick recognition of trivial contradictions
— normalization, z.B., AT (BN C) = M{A,B,C}, Vr.C = =3r.-C
— simplification, e.g., M{A,...,—-A,.. .} = L, Ir Ll =1L, Vr.T=T
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Further Optimizations

® Simplification and Normalization
— quick recognition of trivial contradictions
— normalization, z.B., AT (BN C) = M{A,B,C}, Vr.C = =3r.-C
— simplification, e.g., M{A,...,—-A,.. .} = L, Ir Ll =1L, Vr.T=T

® caching
— prevents the repeated construction of equal subtrees
— L(v) initialized with {C1, ..., C,} via 3- and V-rules

— check if satisfiability status is cached, otherwise
— check satisfiability of C; 1. ..M C,, update the cache
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Further Optimizations

® Simplification and Normalization
— quick recognition of trivial contradictions
— normalization, z.B., AT (BN C) = M{A,B,C}, Vr.C = =3r.-C
— simplification, e.g., M{A,...,—-A,.. .} = L, Ir Ll =1L, Vr.T=T

® caching
— prevents the repeated construction of equal subtrees
— L(v) initialized with {C1, ..., C,} via 3- and V-rules

— check if satisfiability status is cached, otherwise
— check satisfiability of C; 1. ..M C,, update the cache

® heuristics

— try to find good orders for the “don’t care” nondeterminism
- eg.,nv,u 3
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Further Optimizations

® Simplification and Normalization
— quick recognition of trivial contradictions
— normalization, z.B., AT (BN C) = M{A,B,C}, Vr.C = =3r.-C
— simplification, e.g., M{A,...,—-A,.. .} = L, Ir Ll =1L, Vr.T=T

® caching
— prevents the repeated construction of equal subtrees
— L(v) initialized with {C1, ..., C,} via 3- and V-rules

— check if satisfiability status is cached, otherwise
— check satisfiability of C; 1. ..M C,, update the cache

® heuristics
— try to find good orders for the “don’t care” nondeterminism
- eg.,nv,u 3

°
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Optimizing Classification

One of the most wide-spread tasks for automated reasoning is classification
® compute all subclass relationships between atomic concepts in 7
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Optimizing Classification

One of the most wide-spread tasks for automated reasoning is classification
® compute all subclass relationships between atomic concepts in 7

® check for 7 = C C D can be reduced to checking satisfiability of 7
together with the ABox (C M —=D)(a) (or, equivalenty: C(a), (—D)(a))
~ if T is satisfiable: subsumption does not hold (as we have
constructed a counter-model)
~ if T is unsatisfiable: subsumption holds (no counter-model exists)
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Optimizing Classification

One of the most wide-spread tasks for automated reasoning is classification
® compute all subclass relationships between atomic concepts in 7

® check for 7 = C C D can be reduced to checking satisfiability of 7
together with the ABox (C M —=D)(a) (or, equivalenty: C(a), (—D)(a))

~ if T is satisfiable: subsumption does not hold (as we have
constructed a counter-model)
~ if T is unsatisfiable: subsumption holds (no counter-model exists)

® naive approach needs n? subsumption checks for n concept names
® normally cached in the concept hierarchy graph
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Concept Hierarchy Graph

T
Disease Joint

/N

JuvDisease JointDisease

Arthritis

JuvArthritis

TU Dresden Deduction Systems \
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Optimizing Classification

most wide-spread technique is called enhanced traversal
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Optimizing Classification

most wide-spread technique is called enhanced traversal
® hierarchy is created incrementally by introducing concept after concept
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Optimizing Classification

most wide-spread technique is called enhanced traversal
® hierarchy is created incrementally by introducing concept after concept
® top-down phase: recognize direct superconcepts
® bottom-up phase: recognize direct subconcepts
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Optimizing Classification

most wide-spread technique is called enhanced traversal
® hierarchy is created incrementally by introducing concept after concept
® top-down phase: recognize direct superconcepts
® bottom-up phase: recognize direct subconcepts
® transitivity of C used to save checks

® [fALC Band C C D hold,
® thenBC C—ALCD
® andAZD—BYZC
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Enhanced Traversal Example

already created hierarchy: Goal: insertion of JointDisease
T Top-Down Phase:
Disease Joint

/

JuvDisease ointDisease
Arthritis
‘ Bottom-Up Phase:

JuvArthritis

N
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Enhanced Traversal Example
already created hierarchy: Goal: insertion of JointDisease
T
Disease Joint

/

JuvDisease ointDisease

Top-Down Phase:

e JointDisease C ’ Disease

Arthritis
‘ Bottom-Up Phase:

JuvArthritis

N
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Enhanced Traversal Example

already created hierarchy: Goal: insertion of JointDisease
T Top-Down Phase:
Disea? \Joint e JointDisease C Disease
/ e JointDisease C’ JuvDisease

JuvDisease ointDisease
Arthritis
‘ Bottom-Up Phase:

JuvArthritis

N
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Enhanced Traversal Example
already created hierarchy: Goal: insertion of JointDisease
T
Disea? \Joint e JointDisease C Disease

/ \ e JointDisease IZ JuvDisease

. . ‘7 g
JuvDisease ointDisease * JointDisease " Arthritis

Top-Down Phase:

Arthritis
‘ Bottom-Up Phase:

JuvArthritis
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Enhanced Traversal Example
already created hierarchy: Goal: insertion of JointDisease
T
Disease Joint

/N

JuvDisease ointDisease

Top-Down Phase:

JointDisease C Disease

JointDisease [Z JuvDisease
JointDisease [Z Arthritis
JointDisease C* Joint

Arthritis
‘ Bottom-Up Phase:

JuvArthritis
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Enhanced Traversal Example

already created hierarchy:

N

Disease Joint

/N

JuvDisease ointDisease

Arthritis

JuvArthritis

N

TU Dresden
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Goal: insertion of JointDisease

Top-Down Phase:

JointDisease C Disease

JointDisease [Z JuvDisease
JointDisease [Z Arthritis
JointDisease [Z Joint

Bottom-Up Phase:
e JuvArthritis C 7 JointDisease
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Enhanced Traversal Example

already created hierarchy:

N

Disease Joint

/N

JuvDisease ointDisease

Arthritis

JuvArthritis

N

TU Dresden
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Goal: insertion of JointDisease

Top-Down Phase:

JointDisease C Disease

JointDisease [Z JuvDisease
JointDisease [Z Arthritis
JointDisease [Z Joint

Bottom-Up Phase:
e JuvArthritis C JointDisease
e JuvDisease C’ JointDisease
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Enhanced Traversal Example
already created hierarchy: Goal: insertion of JointDisease
T
Disease Joint

/N

JuvDisease ointDisease

Top-Down Phase:

JointDisease C Disease

JointDisease [Z JuvDisease
JointDisease [Z Arthritis

‘ e JointDisease IZ Joint
Arthritis
‘ Bottom-Up Phase:
e JuvArthritis C JointDisease
JuvArthritis - .
\ e JuvDisease IZ JointDisease
e _Arthritis C 7 JointDisease
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Enhanced Traversal Example
already created hierarchy: Goal: insertion of JointDisease
T
Disease Joint

S\

JuvDisease JointDisease

Top-Down Phase:

JointDisease C Disease

JointDisease [Z JuvDisease
JointDisease [Z Arthritis

‘ e JointDisease IZ Joint
Arthritis
‘ Bottom-Up Phase:
e JuvArthritis C JointDisease
JuvArthritis - .
\ e JuvDisease IZ JointDisease
e Arthritis C JointDisease
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Summary

® we have a tableau algorithm for ALCZF knowledge bases

— ABox treated like for ALC
— number restrictions are treated similar to functionality and
existential quantifiers

® termination via cycle detection
— becomes harder as the logic becomes more expressive
® naive tableau algorithm not sufficiently performant
® diverse optimizations improve average case
® specific methods for classification
— enhanced traversal

® tableaux algorithms or variants modifications thereof are the basis of
OWL reasoners
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