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Abstract

In Description Logic (DL) knowledge bases (KBs) in-
formation is typically captured by crisp concepts. For
many applications, querying the KB by crisp query con-
cepts is too restrictive. A controlled way of gradually
relaxing a query concept can be achieved by the use of
concept similarity measures. In this paper we formalize
the task of instance query answering for crisp DL KBs
using concepts relaxed by concept similarity measures.
We investigate computation algorithms for this task in
the DL EL, their complexity and properties for the em-
ployed similarity measure regarding whether unfoldable
or general TBoxes are used.

1 Introduction
Description Logic (DL) knowledge bases are formal vocab-
ularies that describe categories or specific subjects from ap-
plication domains—such as for service matching, the bio-
medical or geo-spatial field. The concepts in the knowledge
base are characterized by relationships to other concepts us-
ing constructors available in the DL in which the knowledge
base is formulated.

The use of DLs became increasingly popular in recent
years, due to the W3C standard OWL 2 for ontology lan-
guages which are based on DLs, and the development of
powerful DL reasoner systems for those languages. These
systems support various reasoning services, such as sub-
sumption and instance queries. Subsumption determines for
a pair of concepts whether elements belonging to the first
concept necessarily also belong to the second one. Given a
concept, instance queries retrieve from a knowledge base all
those individuals that belong to the concept. For some ap-
plications exact matches to an instance query are sometimes
too restrictive. In service matching, OWL TBoxes are em-
ployed to describe types of services and a user request for
a service specifies several conditions for the desired service
by a concept. For such a query concept instance query an-
swering is performed over the OWL knowledge base that
contains the individual services. If an exact match with the
provided requirements is not available, a ‘feasible’ alterna-
tive needs to be retrieved. More precisely, the system should
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Figure 1: Relaxed instances w.r.t. two different similarity
measures. Darker colors represent the relaxed instances of
C w.r.t. higher degrees t.

retrieve those individuals from the knowledge base that sat-
isfy the main conditions, while all other conditions can be re-
laxed. A natural idea on how to relax the notion of instance
query answering is to simply employ fuzzy DLs and per-
form query answering on a fuzzy variant of the initial query
concept. However, on the one hand reasoning in fuzzy DLs
easily becomes undecidable (Borgwardt and Peñaloza 2012)
and on the other hand depending on the user and on the re-
quest, different ways of relaxing the query concept may be
appropriate.

In this paper we investigate a form of answering relaxed
instance queries, where the query concept can be relaxed
by using concept similarity measures. A concept similarity
measure (CSM) is a function from pairs of concepts to the
unit interval, where the value 1 indicates total similarity and
the value 0 total dissimilarity of the concepts. Answering
relaxed instance queries is to compute, given concept C, a
concept similarity measure ∼, and a degree t ∈ [0, 1], the
set of individuals that instances of concepts similar to C by
a degree of at least t, if measured by ∼. This approach, re-
cently proposed in (Ecke, Peñaloza, and Turhan 2013), does
not need to extend the DL in which the knowledge base
is written, thus the complexity for standard reasoning tasks
remain the same. The choice of a CSM allows to encode
the application-specific notion of similarity. Furthermore the
choice of t allows for a flexible degree of similarity, as de-
picted in Figure 1.

For DLs there is whole range of CSMs defined (see
for example (Borgida, Walsh, and Hirsh 2005; d’Amato,
Fanizzi, and Esposito 2005; Janowicz and Wilkes 2009;



Lehmann and Turhan 2012)), which could be employed for
this task. Computing concept similarity is an ontology ser-
vice that is investigated in its own right. For instance, for the
Gene Ontology (Gene Ontology Consortium 2000), which is
written in the DL EL and is used, among others, to solve the
task of finding genes that realize similar functionality (Lord
et al. 2003), a proliferation of different similarity measures
has been defined (Lord et al. 2003; Schlicker et al. 2006;
Mistry and Pavlidis 2008; Alvarez and Yan 2011).

Since concept similarity is not a formalized notion, CSMs
are often defined in an ad-hoc manner or simply tuned to test
data. This makes their behavior hard to predict when applied
to new ontologies. In (Lehmann and Turhan 2012) a set of
properties for CSMs was described and the framework given
there allows users to generate CSMs for EL-concepts with
those properties. Furthermore, users can specify which parts
of the vocabulary used in their knowledge base are important
in regard of assessing similarity of concepts. These measures
naturally allow to select which aspect of a query concept to
relax.

We devise a computation algorithm for answering relaxed
instance queries for concepts defined w.r.t. unfoldable EL
TBoxes and any CSM that meets certain requirements. The
core reasoning problem in our algorithm is to compute, for
an individual a and the query concept C, a concept C ′ that
mimics C, i.e. a concept that is ‘sufficiently similar’ to C
w.r.t. the used similarity measure ∼ and the degree t, while
preserving a as an instance.

To the best of our knowledge there is no CSM defined in
the literature that takes all of the information from general
EL-TBoxes into account. Existing CSMs for general TBoxes
consider only the concept hierarchy (e.g. (d’Amato, Staab,
and Fanizzi 2008; Alvarez and Yan 2011)). In this paper we
devise a family of CSMs that handle all the knowledge en-
coded in general EL-TBoxes. We derive such CSMs by em-
ploying the canonical models of TBoxes and applying a sim-
ilarity measure for interpretations. We show that this inter-
pretation similarity measure (ISM) has properties analogous
to those from (Lehmann and Turhan 2012). We define corre-
sponding CSMs, which also preserve these properties. These
CSMs for general TBoxes are the foundation to lift the com-
putation algorithm for answering relaxed instance queries to
the case of general EL-TBoxes. It shows that the stronger
CMSs obtained for this case allow for computation of re-
laxed instances in polynomial time, if applied to unfoldable
TBoxes.

This paper is structured as follows. The next section re-
calls some basic notions for DLs, in particular EL, and
CSMs. Section 3 introduces relaxed instance query answer-
ing and our approach to compute it by the auxiliary task of
computing a mimic. Section 4 presents a computation algo-
rithm for relaxed instances w.r.t. unfoldable EL-TBoxes and
gives an upper bound on the complexity. Afterwards, we in-
troduce a family of similarity measures on pointed canonical
interpretations ∼i which have well-defined formal proper-
ties. From this measure we derive a CSM ∼c with the same
set of properties which can be used to compute relaxed in-
stances w.r.t. general EL-TBoxes. We give a computation
algorithm in that section and end the paper with directions

Table 1: Concept constructors, TBox axioms and ABox as-
sertions for EL.

Syntax Semantics

top concept > >I = ∆I

concept name A AI ⊆ ∆I

conjunction C uD (C uD)I = CI ∩DI

existential
restriction

∃r.C (∃r.C)I = {d ∈ ∆I |
∃e.(d, e) ∈ rI ∧ e ∈ CI}

concept
definition A ≡ C AI = CI

GCI C v D CI ⊆ DI

concept
assertion C(a) aI ∈ CI

role assertion r(a, b) (aI , bI) ∈ rI

for future work. Due to space constraints the proofs can be
found in the technical report (Ecke and Turhan 2013).

2 Preliminaries
As we want to investigate the notion of similarity in the con-
text of the DL EL, we briefly introduce this logic and CSMs.

The Description Logic EL
Starting from the fixed, countably infinite, disjoint sets of
concept names NC and role names NR, EL-concepts can be
constructed by the following syntactic rule

C,D ::= > | A | C uD | ∃r.D,

where A is a concept name and r is a role name. The set of
all EL-concepts is denoted by C(EL).

The semantics of concepts is defined by means of inter-
pretations I = (∆I , ·I) consisting of a non-empty domain
∆I and an interpretation function ·I that assigns binary re-
lations on ∆I to role names and subsets of ∆I to concept
names. The interpretation function is recursively extended
to EL-concepts as shown in the upper part of Table 1. We
denote the class of all interpretations as I. A pointed inter-
pretation p = (I, d) consists of an interpretation I, and an
element d ∈ ∆I . P is the class of all pointed interpretations,
i.e., P = {(I, d) | I ∈ I, d ∈ ∆I}. Given a pointed inter-
pretation p = (I, d), the set of all EL-concepts that have d
as an instance in I is C(p) = {C ∈ C(EL) | d ∈ CI}.

The middle part of Table 1 displays two kinds of concept
axioms. An EL-TBox or terminology T is a set of such con-
cept axioms. An unfoldable TBox, is a set of concept def-
initions such that each concept name occurs at most once
on the left-hand side of a concept definition and there are
no cyclic dependencies between defined concepts. Concept
names occurring on the left-hand side of a concept defini-
tion are called defined concepts, the other concept names are
atomic concepts.

Consider an additional set NI of individual names, which
is disjoint with NC and NR. An interpretation I = (∆I , ·I)
additionally maps each individual name to an element of



∆I . An ABox A is a set of concept or role assertions, as
displayed in the lower part of Table 1. An EL-knowledge
base (KB) is a pair K = (T ,A) where T is an EL-TBox and
A an EL-ABox.

The semantics of interpretations is extended to TBox ax-
ioms and ABox assertions as shown in Table 1. An interpre-
tation I is a model of a TBox T (ABox A), if it satisfies all
axioms in T (assertions in A). I is a model of a knowledge
base K = (T ,A) if it is a model for both T and A.

The following commonly used reasoning tasks are imple-
mented in most DL reasoning systems. Concept subsump-
tion asks, given a TBox T and two concepts C and D,
whether C is subsumed by D w.r.t. T (denoted C vT D),
i.e. CI ⊆ DI for all models I of T . Concept equivalence
holds for two concepts C and D w.r.t. T (denoted C ≡T D),
iff C vT D and D vT C. Given an individual a, a concept
C, and a KBK, a is called an instance of C w.r.t.K, denoted
K |= C(a), iff aI ∈ CI for all models I of K. Given a KB
K = (T ,A) and a concept C, instance retrieval returns all
individuals from A that are instances of C. These reason-
ing tasks can all be characterized by means of simulations
between interpretations.

Definition 1 (simulation). Let I and J be interpretations.
A relation S ⊆ ∆I ×∆J is a simulation between I and J ,
if the following two conditions hold:

1. For all (d, e) ∈ S and A ∈ NC , if d ∈ AI then e ∈ AJ .
2. For all (d, e) ∈ S, r ∈ NR and (d, d′) ∈ rI , there is an

(e, e′) ∈ rJ with (d′, e′) ∈ S.

The pointed interpretation p = (I, d) simulates the
pointed interpretation q = (J , e) (p . q), if there exists a
simulation S ⊆ ∆I×∆J between I and J with (d, e) ∈ S.
If p . q and q . p, then p and q are equisimilar (p ' q).
There is a strong connection between simulations between
pointed interpretations and their concept sets.

Theorem 2 ((Lutz and Wolter 2010)). Let p, q ∈ P. Then:
1. p . q iff C(p) ⊆ C(q), and 2. p ' q iff C(p) = C(q).

For EL most reasoning procedures rely on the fact that
canonical models can be built, from which entailments can
be read-off directly. By Sig(X) we denote the set of names
and by sub(X) the sub-concepts appearing in X .

Definition 3. Let C ∈ C(EL) and K = (T ,A) be an EL-
KB. The canonical model IC,T = (∆IC,T , ·IC,T ) of C w.r.t.
the TBox T is defined as follows:

• ∆IC,T = {dC} ∪ {dD | ∃r.D ∈ sub(C) ∪ sub(T )}
• AIC,T = {dD | D vT A}, and
• rIC,T = {(dD, dE) | D vT ∃r.E}.

The canonical model IK = (∆IK , ·IK) of the KB K is
defined as follows:

• ∆IK = {da | a ∈ Sig(A) ∩NI} ∪
{dC | ∃r.C ∈ sub(A) ∪ sub(T )},

• AIK = {dD | D vT A} ∪ {da | K |= A(a),
• rIK = {(dD, dE) | D vT ∃r.E} ∪
{(da, dD) | K |= ∃r.D(a)} ∪ {(da, db) | r(a, b) ∈ A}.

Note that canonical models for EL are always finite. The
canonical model IC,T can be seen as the most general model
for C and T , as any other model J of T with a d ∈ CJ can
be simulated by (IC,T , dC). Similarly, for any other model
J ofK with d = aJ for an individual a, (J , d) is simulated
by (IK, da).

Theorem 4 ((Lutz and Wolter 2010)). Let T be an EL-TBox,
C and D be EL-concepts. Then:

1. for all models I of T and all elements d ∈ ∆I it is the
case that d ∈ CI iff (IC,T , dC) . (I, d); and

2. C vT D iff dC ∈ DIC,T (i.e., D ∈ C((IC,T , dC))) iff
(ID,T , dD) . (IC,T , dC).

When testing whether an individual is a relaxed instance
of some concept C, we will see the need to compute ‘the
best-fitting EL-concept description’ that has the individual
as an instance. This can be realized by the task of computing
the most specific concept.

Definition 5 (most specific concept). Let K = (T ,A) be
a KB and a an individual from A. A concept C is the most
specific concept (msc) of a w.r.t. K (denoted mscK(a)) if it
satisfies:

1. K |= C(a), and
2. K |= D(a) implies C vT D for all concepts D.

Since the msc may not exists due to an infinite nesting of
existential restrictions, one can compute an approximation
by bounding the depth of the quantifiers. Formally, given a
concept C, we define the role-depth rd(C) of C by

rd(C) :=


0 if C ∈ NC ∪ {>}
1 + rd(D) if C = ∃r.D
max{rd(C1), rd(C2)} if C = C1 u C2

If in Definition 5 C and D have a role-depth limited to
k ∈ IN, then C is the role-depth bounded msc of a w.r.t.
K (k-mscK(a)). The msc and the k-msc are unique up to
equivalence in EL, if they exist (Peñaloza and Turhan 2011).

Concept Similarity Measures
Given a DL L and a TBox T , a concept similarity measure
(CSM) is a function ∼T : C(L) × C(L) → [0, 1] such that
C ∼T C = 1 for all concepts C. Intuitively, ∼T expresses
how close two concepts are. A value C ∼T D = 0 means
that the concepts C and D are totally dissimilar w.r.t. T ,
while a value of 1 indicates total similarity. We often sim-
ply write ∼ instead of ∼T if the TBox T is clear from the
context.

In (Lehmann and Turhan 2012) a set of properties for
CSMs is defined and a framework is devised that allows to
construct CSMs for EL-concepts, w.r.t. unfoldable TBoxes,
that have these formal properties. In this paper we investi-
gate CSMs for EL-concepts defined w.r.t. general TBoxes.
We extend the definition of the properties of CSMs from
(Lehmann and Turhan 2012) to the case of general TBoxes.

Definition 6. A CSM ∼ : C(EL)× C(EL)→ [0, 1] is:

symmetric iff C ∼T D = D ∼T C;



equivalence invariant iff for all C ≡T D it holds that
C ∼T E = D ∼T E;

equivalence closed iff C ≡T D ⇐⇒ C ∼T D = 1;
bounded iff the existence of E 6= > with C vT E and
D vT E implies C ∼T D > 0;

dissimilar closed iff C,D 6= > and there is no E 6= > with
C vT E and D vT E implies C ∼T D = 0;

subsumption preserving iff C vT D vT E implies
C ∼T D ≥ C ∼T E;

reverse subsumption preserving iff C vT D vT E implies
D ∼T E ≥ C ∼T E, and

These formally defined properties make CSMs more pre-
dictable for users. The measures in (Suntisrivaraporn 2013;
Lehmann and Turhan 2012) fulfill most of these proper-
ties, in particular, they are symmetric and equivalence in-
variant, two properties that we will require later to com-
pute relaxed instances. The parameterizable similarity mea-
sures from (Lehmann and Turhan 2012) additionally allow
users to calibrate the measure to fit their expectations. In our
setting these parametrizable CSMs enable users to specify
which features of query concepts should be relaxed.

3 Relaxed Instances
As discussed before, our goal is to generalize query answer-
ing to allow for relaxing the solution set. This means, when
a query concept Q is given, we are not only interested in
the instances of Q, but also those individuals that are close
enough to being instances; those individuals are called re-
laxed instances.

There are many ways to formalized the notion of relaxed
instances, but in this paper we make use of CSMs for this re-
laxation. We say that relaxed instances of the query concept
are those individuals that are instance of a (possibly differ-
ent) concept that is sufficiently similar to the original query
concept. The condition of ‘sufficiently similar’ is expressed
via a threshold, or minimal similarity, t. One can then con-
trol how inclusive the relaxed instance solutions should be,
by adjusting t, and guide the direction, in which solutions
are relaxed by choosing an appropriate CSM.

Definition 7 (relaxed instance). Let L be some DL, ∼ be a
CSM, and t ∈ [0, 1). The individual a ∈ NI is a relaxed
instance of the query concept Q w.r.t. the L-knowledge base
K, ∼ and the threshold t iff there exists a L-concept de-
scription X ∈ C(L) such that Q ∼ X > t and K |= X(a).
Relax∼t (Q) denotes the set of all individuals occurring in K
that are relaxed instances of Q w.r.t. K, ∼ and t.

The task we are mostly interested in is not relaxed in-
stance checking, i.e. testing whether a given individual a is a
relaxed instance of the query concept Q, but to compute all
relaxed instances of Q, i.e. the set Relax∼t (Q).

One naive idea to compute this set would be to first com-
puting all concepts X that are similar to C with degree
greater than t, and then obtaining all the instances of these
concepts X; in symbols,

Relax∼t (C) =
⋃

C∼X>t

{a | a is an instance of X}.

CI ,M(C, a)I

a

b

msc(a)

msc(b)

M(C, b)I

Figure 2: Two individuals, their most specific concepts (dot-
ted), and the mimics of a concept C w.r.t. the individuals
(dashed).

However, this approach is not feasible, since there might be
an infinite number of concepts X sufficiently similar to C.
Furthermore, given an CSM, it is not apparent how to even
obtain all concepts that are similar to C with degree > t,
since in general CSMs only allow to evaluate the similarity
of two given concepts.

To avoid these issues, we consider a different reasoning
problem, that considers the computation of a concept that
has a given individual a as an instance and resembles C best
w.r.t. the given CSM. We call this the mimic of C w.r.t. a.

Definition 8 (mimic). Let L be a DL,K be an L-knowledge
base, a ∈ NI be an individual name, C be an L-concept
description, and ∼ be a CSM. An L-concept D is called a
mimic of C w.r.t. a, denoted D ∈M(C, a), iff the following
two conditions hold:

• a is an instance of D, i.e., aI ∈ DI for all models I of
K, and

• for all L-concept descriptions E holds, if a is an instance
of E, then C ∼ D ≥ C ∼ E.

Intuitively, a mimic of C w.r.t. a is the most similar con-
cept to C that has a as an instance. In general, the mimic
of C w.r.t. an individual a may not be unique, even modulo
concept equivalence, however, for our purposes it suffices to
compute only one of them.

Figure 2 depicts the idea of mimics. In the figure, a and
b are two different individuals. Since a is an instance of C,
C is also a mimic of C w.r.t. a because C ∼ C = 1. The
dashed line depicts a mimic of C w.r.t. b. Notice that this
mimic must contain b and thus subsume msc(b), but need
not be a subsumer of C, it just tries to resemble C in a way
that results in maximal similarity.

There is an easy reduction from the computation of re-
laxed instances to the computation of mimics. The idea is
that, for each individual a appearing in the knowledge base
K, the mimic of Q w.r.t. a must have a similarity greater
than t to the query concept Q for a to be a relaxed instance
of Q; if not, a cannot be a relaxed instance, as no concept
can have a greater similarity to Q while containing a. This
is formalized in the following proposition.

Proposition 9. Let K be a knowledge base, a be an indi-
vidual occurring in K, Q be a concept description, ∼ be a



CSM and t ∈ [0, 1]. Then a ∈ Relax∼t (Q) iff there is a mimic
D ∈M(Q, a) of Q w.r.t. individual a such that Q ∼ D > t.

This connection allows to study the problem of computing
mimics in order to find relaxed instances. In the next section,
we will show how this can be solved for CSMs on unfoldable
terminologies.

4 Computing Relaxed Instances w.r.t.
Unfoldable EL-Terminologies

Structural concept similarity measures with nice proper-
ties are often only defined for unfoldable TBoxes, as
in (Lehmann and Turhan 2012) and (Suntisrivaraporn 2013).
The reason is that in those terminologies, any concept can
be expanded by exhaustively replacing all defined concept
names by their definitions, until only atomic concept names
remain; the concept is then called fully expanded. After ex-
panding all concepts, the TBox can be completely disre-
garded for computing similarities or other inferences like
subsumption. In this section, we show how to compute mim-
ics, and therefore relaxed instances w.r.t. unfoldable EL-
terminologies.

In general there may exist infinitely many concept de-
scriptions which have the individual a as an instance, and
thus enumerating them and finding the maximal similarity
to the query concept Q to compute the mimic is not a feasi-
ble option. However, under some circumstances we can limit
the number of concepts that need to be tested.

Recall that any mimic D ∈ M(Q, a) must have a as an
instance, and thus, by definition of the msc, msc(a) vT D
holds. For equivalence invariant similarity measures one can
use the msc(a) as a lower bound for the mimic, and only
consider concept descriptions that can be obtained from syn-
tactic manipulations of msc(a) that result in a generalized
concept, i.e., by removing some concept names or existen-
tial restrictions.

Definition 10 (generalized concept). Let C be a concept de-
scription of the form

C =
d

i∈I Ai u
d

j∈J ∃rj .Ej ,

with Ai ∈ NC for all i ∈ I , and rj ∈ NR, Ej is a concept
description for all j ∈ J . Then a concept description D is a
generalized concept of C iff it has the form

D =
d

i∈I′ Ai u
d

j∈J′ ∃rj .E′j

with I ′ ⊆ I , J ′ ⊆ J and E′j is a generalized concept of Ej

for j ∈ J ′.

Clearly, if D is a generalized concept of C, then we al-
ways have C v D, since generalizing only removes parts
of C, but never adds new features. Indeed, in our setting the
other direction holds as well for unfoldable TBoxes T : If
msc(a) is fully expanded w.r.t. T , then any concept descrip-
tion D with msc(a) v D is equivalent to a generalized con-
cept of msc(a). If we now restrict to equivalence invariant
CSMs, we get the following result for the mimic.

Lemma 11. Let K = (T ,A) be an unfoldable EL-KB, a
be an individual from A, C be an EL-concept, and ∼ be an

equivalence invariant similarity measure. If E = msc(a) is
the fully expanded most specific concept of a, then there is a
mimic D ∈M(C, a) of C w.r.t. a andK that is a generalized
concept of E.

Proof sketch. We show that any concept having a as an in-
stance is equivalent to a generalized concept of msc(a). Let
F be a concept description with K |= F (a). Since ∼ is
equivalence invariant, we can assume F to be fully expanded
as well. E vK F holds by definition of the msc. As both E
and F are fully expanded and thus do not contain defined
concept names from the TBox, any subconcept of F must
also be a subconcept E, but F may contain redundancies
that can simply be removed to get an equivalent concept.
Thus F is equivalent to a generalized concept of E.

However, in general the msc may result in infinitely
nested existential restrictions, and thus could only be de-
scribed by concept descriptions of infinite size. In this case
there are infinitely many generalized concepts of finite size
that would need to be checked to find a mimic. Lemma 11
therefore does not always provide a solution to the problem.
However, the query concept Q has always a finite role-depth,
even if fully expanded. Since most structural similarity mea-
sures used in practice, like those presented in (Suntisrivara-
porn 2013; Lehmann and Turhan 2012), compute the sim-
ilarity recursively between sub-concepts at the same role-
depth, it is possible to also limit the role-depth of the most
specific concept and still get the same result:
Lemma 12. Let K = (T ,A) be an unfoldable EL-KB, a
be an individual fromA, Q be a fully expanded EL-concept,
and ∼ be a equivalence invariant similarity measure, which
is additionally structural and depth-bounded, i.e.:

C ∼ D ≥ C ∼ E ⇒ ∃r.C ∼ ∃r.D ≥ ∃r.C ∼ ∃r.E, (1)
C ∼

d
i∈I Ai ≥ C u ∃r.D ∼

d
i∈I Ai, (2)

for all fully expanded concepts C, D, and E, and atomic
concept names Ai. If k = rd(Q) and E = k-msc(a) is the
fully expanded most specific concept of a bounded to the
role-depth k, then there is a mimic D = M(Q, a) of Q w.r.t.
a that is a generalized concept of E.

Proof sketch. Using the properties (1) and (2) above, we can
show the following: Trimming the role-depth of two con-
cepts C and D to the minimal role-depth min(rd(C), rd(D))
never reduces the similarity value, i.e., the similarity value
between the trimmed concepts must be greater than or equal
to the similarity value of C and D.

Using this, we can prove the lemma as follows: Let M
be any mimic of Q w.r.t. a. Since the mimic is always
equivalent to a generalized concept M ′ of the (possibly in-
finite) msc(a), and since ∼ is equivalence invariant, M ′ is
also a mimic. Using the previous property, we know that
M ′ trimmed to role-depth k must still have (at least) the
same similarity to Q, and hence also be a mimic. But M ′
trimmed to role-depth k is also a generalized concept of the
k-msc(a).

This shows that we can always find the mimic of Q w.r.t.
a from a finite set of concept descriptions: the generalized



Procedure: relaxed-instance? (a,Q,K,∼, t)
Input: a: individual in K; Q: EL-concept; K: unfoldable
EL-KB; ∼: CSM; t ∈ (0, 1]: threshold

Output: whether a ∈ Relax∼t (Q) w.r.t. K
1: k := rd(Q)
2: E := k-msc(a) w.r.t. K
3: guess a generalized concept F of E
4: return F ∼ Q > t

Figure 3: Non-deterministic algorithm for relaxed instances
checking w.r.t. unfoldable EL terminologies.

concepts of the fully expanded k-msc(a). However, instead
of computing the mimic D ∈ M(Q, a) and testing whether
the similarity between the Q and D is greater than t, it is
enough to find any concept D′ with a as an instance and
Q ∼ D′ > t to show that a is a relaxed instance of Q; this
gives rise to the non-deterministic algorithm in Figure 3, that
checks whether a is a relaxed instance of Q.
Corollary 13. Let K = (T ,A) be an unfoldable EL-
KB, Q be a fully expanded EL-concept, a be an individ-
ual in K, ∼ be an equivalence invariant similarity mea-
sure fulfilling properties 1 and 2 from Lemma 12 and
t ∈ [0, 1]. Then relaxed-instance?(a,Q,K,∼, t) computes
whether a ∈ Relax∼t (Q) w.r.t. K.

Guessing a generalized concept F of a concept descrip-
tion E can be done in time linear on the size ‖E‖ of E by
recursively guessing for each concept name and each exis-
tential restriction in E whether they should occur in F or
not. However, the size of E = k-msc(a) can be exponential
in k and polynomial in ‖K‖ (Peñaloza and Turhan 2011).
Since k = rd(C) is bounded linearly by ‖C‖, the algo-
rithm runs in NEXP-time (provided that ∼ can be computed
in NEXP-time). However, the algorithm runs in NP-time in
‖K‖ (provided that ∼ can be computed in NP), and since
C is an input concept, its role-depth can be assumed to be
rather low. Hence, we conjecture that the exponential blow-
up of the msc usually plays only a minor role in practical
applications.

5 Relaxed Instances w.r.t. General
EL-TBoxes

The approach presented in the previous section does not
work for general EL-TBoxes since those structural simi-
larity measures first fully expand the concepts w.r.t. the
background knowledge. As soon as the background knowl-
edge contains cyclic concept inclusions, this expansion is
no longer possible. In fact, to the best of our knowledge no
equivalence invariant, structural concept similarity measure
that can handle general EL-TBoxes has been introduced in
the literature so far. In this section, we therefore define such
a concept similarity measure ∼c; this measure can then be
used to find all relaxed instances for such TBoxes.

The approach to compute the similarity C ∼c D w.r.t.
T is to translate the concepts C and D into their canonical
models IC,T and ID,T and then structurally compute the

similarities for the elements dC and dD in these interpreta-
tions. As observed before, IC,T and ID,T are always finite.
The TBox T itself can be disregarded when computing the
interpretation similarity from the canonical models, since all
its axioms are already used to construct the models.

We need to define similarity measures on interpretations
and their properties, which are derived from the properties of
concept similarity measures. All proofs for this section can
be found in the technical report (Ecke and Turhan 2013).

Interpretation Similarity Measures
An interpretation similarity measure (ISM) is defined as a
similarity measure on pointed interpretations, i.e., a function
∼P: P×P→ [0, 1] such that p ∼P p = 1 for all p ∈ P. It
maps any pair of pointed interpretations to a similarity value
between 0 and 1.

There are various desirable properties that ISMs can have.
We concentrate here on those that directly transfer from
analogous properties of CSMs introduced by (Lehmann and
Turhan 2012). Given suitable simulation relations . and '
(like e.g., those defined in Definition 1 for EL), we call an
interpretation similarity measure:

• symmetric iff p ∼P q = q ∼P p for all p, q ∈ P;

• bounded iff C(p) ∩ C(q) ) {>} implies p ∼P q > 0 for
all p, q ∈ P;

• dissimilar closed iff C(p) ∩ C(q) = {>} implies p ∼P

q = 0 for all p, q ∈ P with C(p) ) {>} and C(q) ) {>};
• equisimulation invariant iff for all p, q, u ∈ P, p ' q

implies p ∼P u = q ∼P u;

• equisimulation closed iff p ' q ⇐⇒ p ∼P q = 1 for all
p, q ∈ P;

• simulation preserving iff for all p, q, r ∈ P, r . q . p
implies p ∼P q ≥ p ∼P r;

• reverse simulation preserving iff r . q . p implies q ∼P

r ≥ p ∼P r for all p, q, r ∈ P.

We now define a parameterizable ISM∼i, using the simu-
lation relations defined in Definition 1, which correspond to
subsumption and equivalence in EL. This is important when
lifting those properties to the CSMs ∼c. Given a pointed in-
terpretation p = (I, d), we denote with

• CN(p) = {A ∈ NC | d ∈ AI} the set of concept names
that have d as instance in I, and

• SC(p) = {(r, (I, e)) ∈ NR ×P | (d, e) ∈ rI} the set of
direct successors of d in I.

For two pointed interpretations to be perfectly similar, they
need to have the same set of concept names and edges la-
beled with the same roles going to perfectly similar suc-
cessor elements. Otherwise, the most similar concept names
and the most similar direct successors are compared and a
similarity value is computed from this pair. For both cases,
we need the notion of pairings:

A pairing P ⊆ X × Y is a total binary relation, where
totality means that all elements of X and all elements of Y
appear in some tuple of P as the first component or second



component, respectively. For two pointed interpretations p
and q, we are interested in two types of pairings:

• PC(p, q) ⊆ P(CN(p) × CN(q)) is the set of all concept
name pairing on the concept names that p and q are in-
stances of; and

• PS(p, q) ⊆ P(SC(p) × SC(q)) is the set of all successor
pairings on the direct successors of p and q.

Note that when one of CN(p) or CN(q) is empty, the pair-
ings can not be total. In this case, we use {>} instead of
the empty concept name set. Similarly, when one of SC(p)
or SC(q) is empty, we instead use the set {(r>, p)} or
{(r>, q)}, respectively, where r> ∈ NR is a new role name.
This way, the pairings are always well-defined.

The ISM ∼i will extend a primitive measure. A primitive
measure∼prim : NC∪{>}×NC∪{>}∪NR×NR → [0, 1]
assigns similarity values to each pair of basic concepts (i.e.,
concept names or >) and each pair of role names. Any
primitive measure has to satisfy the following properties:
x ∼prim x = 1 for any role name or basic concept x,
> ∼prim A = A ∼prim > = 0 for all A ∈ NC , and sim-
ilarly r> ∼prim s = s ∼prim r> = 0 for all s ∈ NR \ {r>}.
Additionally, for the similarity measure∼i to be symmetric,
∼prim needs to be symmetric as well.

We give a default primitive measure, that simply as-
signs similarity 0 to pairs of different basic concepts or role
names:

x ∼default y =

{
1 if x = y

0 otherwise

However, other primitive measures are imaginable and use-
ful. For example, one might want to express that two colours
Red and Orange are similar to some degree even if they
have different concept names. Additionally, one can as-
sign weights to different concept and role names through
a weighting function g : NC ∪ NR → R>0 that pri-
oritizes different features of the similarity measure. This
function g can be extended to pairs of concept names as
g(A,B) = max(g(A), g(B)) and pairs of role names as
g(r, s) = max(g(r), g(s)).

Any primitive measure ∼prim and weighting function g
can then be extended to a similarity measure on pointed
interpretations by recursively traversing the interpretation
graphs, computing the primitive measure for each pair of
concepts in the best concept name pairing and combining it
with the discounted similarity between all pairs of succes-
sors in the best successor pairing at each element.

Definition 14. Given a primitive measure∼prim, a weighting
function g, and a discounting factor w ∈ (0, 1), the ISM
∼i: P×P→ [0, 1] is defined as follows:

p ∼i q = max
PC∈PC(p,q)
PS∈PS(p,q)

 sim(PC) + sim(PS)∑
(A,B)∈PC

g(A,B) +
∑

((r,p′),(s,q′))∈PS

g(r, s)
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Figure 4: Computation of (I, a) ∼i (J , e) by pairing their
successors and recursively computing ∼i between those.

where

sim(PC) =
∑

(A,B)∈PC

g(A,B)(A ∼prim B), and

sim(PS) =
∑

((r,p′),(s,q′))
∈PS

g(r, s)(r ∼prim s)((1−w) + w(p′ ∼i q
′)).

The constant w allows for discounting of successors, and
should have a value 0 < w < 1.
Example 15. Consider the pointed interpretations (I, a)
and (J , e) depicted in Figure 4, the default primitive mea-
sure, a weighting function g that assigns 1 to all concept and
role names, and a discounting factor w = 0.8. To compute
the similarity (I, a) ∼i (J , e), we proceed as follows.

1. To compute the similarity between c and d, we find the
only concept name pairing is {(B,B)} and the only suc-
cessor pairing is {((r>, c), (s, d))}. Thus we have that
(I, a) ∼i (J , b) is B∼defaultB+(r>∼defaults)·...

2 = 0.5.
2. The similarity between b and d, for the best concept name

pairing {(B,B), (C,B)} and the best successor pairing
{((s, c), (s, d))}, is 1+0+(0.2+0.8·0.5)

3 = 0.533.
3. The similarity between g and f , for the best concept

name pairing {(A,A), (A,C)} and the best successor
pairing {((s, c), (s, d)), ((r, g), (r, f))}, is the solution to
the equation x = 1+0+(0.2+0.8·0.5)+(0.2+0.8·x)

4 , which is
x = 0.563.

4. Finally, the similarity between a and e, for the best
concept name pairing {(A,A)} and the best suc-
cessor pairing {((s, b), (s, d)), ((r, g), (r, f))}, is
1+(0.2+0.8·0.533)+(0.2+0.8·0.563)

3 = 0.759.
If role s is very important for the similarity, one can adapt the
similarity measure by increase the weight g(s). Similarly,
if concept name A is less important than the other concept
names, since it only describes a broad category, one can de-
crease its weight. One can also change the primitive measure
to evaluate r ∼prim s = 0.5 if roles r and s actually denote
similar relations, even though they use different role names.
In general, this might imply that different best pairings will
be found. Finally, if one wants to put more emphasize on the
similarity of the role names itself and less on the similarity
of the actual elements of the successors, one can do so by
reducing the discounting factor. These three degrees of free-
dom allow for the adaptation of ∼i to many different use
cases.



Note that by defining the ISM ∼i this way, it is not equi-
simulation closed. The reason is that the successor pairing
always connects successors symmetrically, which gives rise
to problems for the case where one successor of an element
simulates a second successor. To regain equivalence invari-
ance, one can first normalize the interpretations I and J
before applying the similarity measure.
Definition 16 (normal form for interpretations). An inter-
pretation I = (∆I , ·I) is in normal form if there are
no elements a, b, c ∈ ∆I with {(a, b), (a, c)} ∈ rI and
(I, b) . (I, c), i.e., no node has two successor nodes for
the same role name that are in a simulation relation.
Any interpretation I can be transformed into normal form
as follows:

1. remove all edges (a, b) ∈ rI in the interpretation graph,
for which there exists an edge (a, c) ∈ rI such that
(I, b) . (I, c) but not (I, b) ' (I, c)

2. for all edges (a, b0) ∈ rI , check if there are other edges
(a, bi) ∈ rI , i > 0, with (I, b0) ' (I, bi) and choose
one representative bj ; then remove all other edges (a, bi),
i 6= j, from rI .
Note that this normalization is well-defined, since the

pointed interpretations are always finite, and simulations can
be computed in polynomial time in the size of the interpreta-
tion. In the following, whenever we write (I, a) ∼i (J , b),
we implicitly assume that I and J have been normalized
first. Using this, we can finally show that∼i is a well-defined
ISM with formal properties:
Theorem 17. The similarity measure∼i is well-defined, i.e.,
p ∼i q has a unique solution for all pointed interpretations
p, q ∈ P. Furthermore∼i is symmetric, bounded, dissimilar
closed, equisimulation invariant, and equisimulation closed
for the simulation relations defined in Definition 1 and nor-
malized pointed interpretations.

Although ∼i as given in Definition 14 is well-defined, it
cannot be used directly to compute the similarity value, since
cycles in the interpretation would lead to infinite recursion.
Instead, one can view the defining equation as an iterative al-
gorithm: When starting with a similarity value of 0 between
all elements of two interpretations I and J , and iteratively
applying the equation to update those similarity values, they
will converge to the solution in the limit. This follows from
the Banach fixed-point theorem (Banach 1922), as ∼i can
be seen as a contraction mapping on the similarity values
between all elements of I and J .

Using this canonical model, we define a concept similarity
measure ∼c on EL-concept descriptions w.r.t. a general EL-
TBox T as follows:

C ∼c D = (I ′C,T , dC) ∼i (I ′D,T , dD),

where I ′C,T and I ′D,T are the normalized canonical models
of C and D w.r.t. T .

The concept similarity measure ∼c inherits the useful
properties of ∼i, since the properties for interpretation sim-
ilarity measures were defined to correspond exactly to the
concept similarity properties given in the preliminaries.

Theorem 18 (Properties of ∼c). The concept similarity
measure∼c is symmetric, bounded, dissimilar closed, equiv-
alence invariant, and equivalence closed.

The proof for this theorem is given in (Ecke and Turhan
2013).

Computing Relaxed Instances w.r.t. ∼c

First we define the notion of fully expanded concepts also
for the general EL case:

Definition 19 (fully expanded concept). Let T be a general
EL-TBox. A concept description C is fully expanded w.r.t.
T iff for all GCIs D v E ∈ T with C vT ∃r1 . . . ∃rn.D
we have that ∃r1 . . . ∃rn.E is a generalized concept of C.

For the computation of relaxed instances for ∼c, recall
that a ∈ Relax∼t (Q) can be computed for unfoldable
terminologies by checking all generalized concepts of the
k-msc(a) for k = rd(Q). Of course, as soon as we have a
general TBox, expanding Q may result in an infinite role-
depth by expanding cyclic definitions, so this approach does
not work directly here. However, given a KB K = (T ,A),
one can express the fully expanded msc(a) in EL by unrav-
eling the canonical model IK starting from da, and thus for
any concept C we have

C ∼c msc(a) = (IC,T
′, dC) ∼i (IK′, da),

where IC,T
′ and IK′ are the normalized canonical models

of C and A w.r.t. the TBox T . The canonical model IK, in
contrast to the fully expanded msc, is always finite.

However, we do not need to compute the similarity be-
tween the query concept Q and the msc(a) directly, but find
the maximal similarity between Q and generalized concepts
of msc(a). Generalizing a concept C is possible by remov-
ing concept names or existential restriction, which corre-
sponds on the interpretation side to only taking subsets of the
concept names SCN ⊆ CN(q) and successors SSC ⊆ SC(q)
of the pointed interpretations q = (IC,T , dC) and all its suc-
cessors. This gives the algorithm in Figure 5 to iteratively
compute the maximal similarity between a pointed interpre-
tation p and all generalizations of the pointed interpretation
q.

Using this, the algorithm to actually compute all relaxed
instances of a query concept Q w.r.t. ∼c is conceptually
quite easy, as it only needs to compute the maximal simi-
larities between Q and all individuals a and check whether
they are larger than t. The algorithm is depicted in Figure 6.

Example 20. Consider the the KB K = (T ,A) consisting
of the following TBox T and knowledge base A:

T = {A v ∃r.A u ∃s.B, C v ∃s.B },
A = {A(e), A u C(f), B(d),

r(e, f), r(f, f), s(f, d),

s(e, d), s(d, d) }.

The similarity measure used is the same as in Example 15,
with the default weighting function, the discounting factor
w = 0.8 and the default primitive measure. Given the query
concept Q = A u ∃s.(B u C), the normalized canonical



Procedure: maxsim (I,J ,∼prim, g, w)
Input: I,J : finite interpretations; ∼prim: primitive mea-

sure; g: weighting function; w ∈ (0, 1): discount factor
Output: maximal similarities between p = (I, a) and all

generalizations of q = (J , b)
1: msim0(d, e)← 0 for all d ∈ ∆I and e ∈ ∆J

2: for i← 1 to n do
3: for all d ∈ ∆I and e ∈ ∆J do
4: msimi(d, e)← max

SCN⊆CN(e),SSC⊆SC(e)

(
max

PC⊆CN(d)×SCN,PS⊆SC(d)×SSC

similarity(PC , PS ,∼prim, g, w, i)
)

5: end for
6: end for

Procedure: similarity (PC , PS ,∼prim, g, w, i)
1: sim(PC)←

∑
(A,B)∈PC

g(A,B)(A ∼prim B)

2: sim(PS)←
∑

((r,p′),(s,q′))∈PS

g(r, s)(r ∼prim s)
(
(1− w) +

w ·msimi−1(p′, q)
)

3: return
sim(PC) + sim(PS)∑

(A,B)∈PC

g(A,B) +
∑

((r,p′),(s,q′))∈PS

g(r, s)

Figure 5: Algorithm to compute the maximal similarities be-
tween all elements of two finite interpretations I and J .

Procedure: relaxed-instances (Q,K, t,∼prim, g, w)
Input: Q: EL-concept; K = (T ,A): EL-KB; t ∈ [0, 1]:

threshold; ∼prim: primitive measure; g: weighting func-
tion; w ∈ (0, 1): discounting factor

Output: individuals a ∈ Relax∼c
t (Q)

1: compute canonical models IQ,T and IK
2: maxsim(d, e)← maxsim(IQ,T , IK,∼prim, g, w)
3: return {a ∈ NI ∩ Sig(A) | maxsim(dQ, da) > t}

Figure 6: Algorithm to compute all relaxed instances of a
query concept Q w.r.t. a knowledge base K and threshold t.

models I ′Q,T and I ′K are exactly the interpretations I and J
found in Example 15, with dQ = a. The algorithm maxsim
will compute the following similarity values msimi between
dQ and d, e, f in each iteration i:

i msimi(dQ, d) msimi(dQ, e) msimi(dQ, f)

0 0 0 0
1 0.067 0.467 0.35
2 0.173 0.667 0.5
3 0.209 0.748 0.561
4 0.209 0.757 0.567
5 0.209 0.758 0.569

Since the both canonical models are cyclic, the similarity
values will change slightly in further iterations, but already
after the 5th, the maximal error is less than 0.05%. Using
these values, we see that for the threshold t = 0.5, both e

and f are relaxed instance of Q, while d is not.

The maxsimi values computed in the algorithm monoton-
ically converge from below to the maximal similarities be-
tween generalized concepts of the most specific concept of
an individual and the query concept. Thus, for any individual
a, which is a relaxed instance of Q with a threshold strictly
larger than t, there exists i ∈ N such that for all j > i we
have maxsimj(Q, a) > t. Thus, the algorithm is sound and
complete in the following sense:

Theorem 21. Let ∼c be the CSM derived from ∼i with the
primitive measure ∼prim, the weighting function g and the
discounting factor w. Then the algorithm relaxed-instances
is sound and complete:

1. Soundness: If a ∈ relaxed-instances(Q,K, t,∼prim, g, w)
for a number n of iterations, then a ∈ Relax∼c

t (Q).
2. Completeness: If a ∈ Relax∼c

t (Q), then there exists an
i ∈ N such that for all n ≥ i iterations it holds that
a ∈ relaxed-instances(Q,K, t,∼prim, g, w).

Furthermore, the algorithm converges quite fast: For any
iteration, the difference between the actual similarity and the
computed value reduces by a factor of w. This is again a di-
rect consequence of the Banach fixed-point theorem, as w
is an upper bound for the Lipschitz constant of the contrac-
tion mapping. This means that, to reduce the error tolerance
of the solutions by a constant factor, e.g. one tenth, only
a constant number of iterations need to be done addition-
ally. However, one cannot compute how many iterations are
needed beforehand and cannot be sure if, at any given point,
the algorithm already found all relaxed instances, or if some
relaxed instances with a maximal similarity very close to the
threshold t are still missing.

If applying the algorithm relaxed-instances w.r.t. unfold-
able TBoxes T , then maxsim will however return the exact
answer after exactly k iterations, where k = rd(Q) + 1 is
the role-depth of the query concept Q expanded w.r.t. T . In
this case, the algorithm can be made deterministic and, since
each iteration of maxsim only takes polynomial time in the
size of K and Q, runs in PTIME.

6 Conclusions
We have proposed a new reasoning service that allows re-
laxed instance query answering for application-specific no-
tions of similarity by the appropiate choice of a CSM. The
inference has two main degrees of freedom: in the choice
of the CSM, and in the degree of relaxation of the con-
cept. Intuitively, different similarity measures yield different
weights on specific criteria. For example, one could require
that small changes inside existential restrictions produce a
high level of dissimilarity.

Further we investigated necessary requirements for the
CSMs to be employed. We devised computation algorithms
for relaxed instances in the setting with unfoldable and with
general TBoxes. For the latter setting we needed to introduce
a new family of CSMs that take the whole information from
general TBoxes into account. The simc CSMs are, to the
best of our knowledge, the first CSMs for general TBoxes.



Based on these we gave an computation algorithm for re-
laxed instances w.r.t. general TBoxes.

There are many options for future work. On the theoreti-
cal side it would be interesting to explore how this apporach
can be extended to expressive DLs. We conjecture that our
approach extends to Horn-DLs, since they induce canonical
models as well. On the practical side there is plenty of room
for optimizations. For instance, the use of a concept that
states necessary conditions in combination with the query
concept can considerably reduce the number of individuals
to be checked in practice. Furthermore, while the complexity
of each iteration in the general case is polynomial, the need
to check every subset and every pairing is certainly ineffi-
cient. Methods to reduce the subsets and pairings that need
to be considered are expedient to make this work in practice.
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Peñaloza is partially supported by DFG within the Clus-
ter of Excellence ‘Center for Advancing Electronics Dres-
den’ (cfAED). A.-Y. Turhan is partially supported by DFG
in the Collaborative Research Center 912 ‘Highly Adaptive
Energy-Efficient Computing’ (HAEC).

References
Alvarez, M. A., and Yan, C. 2011. A graph-based semantic
similarity measure for the gene ontology. J. Bioinformatics
and Computational Biology 9(6):681–695.
Banach, S. 1922. Sur les oprations dans les ensembles
abstraits et leur application aux quations intgrales. Funda-
menta Mathematicae 3(1):133–181.
Borgida, A.; Walsh, T.; and Hirsh, H. 2005. Towards
measuring similarity in description logics. In Proc. of the
2005 Description Logic Workshop (DL 2005), volume 147
of CEUR Workshop Proceedings.
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Ecke, A.; Peñaloza, R.; and Turhan, A.-Y. 2013. Towards
instance query answering for concepts relaxed by similarity
measures. In Godo, L.; Prade, H.; and Qi, G., eds., Workshop
on Weighted Logics for AI (in conjunction with IJCAI’13).
Gene Ontology Consortium, T. 2000. Gene Ontology: Tool
for the unification of biology. Nature Genetics 25:25–29.
Janowicz, K., and Wilkes, M. 2009. Sim-dla: A novel se-
mantic similarity measure for description logics reducing
inter-concept to inter-instance similarity. In Proc. of the 6th
European Semantic Web Conf. (ESWC’09), volume 5554 of
LNCS, 353–367. Springer.
Lehmann, K., and Turhan, A.-Y. 2012. A framework for
semantic-based similarity measures for ELH-concepts. In
del Cerro, L. F.; Herzig, A.; and Mengin, J., eds., Proc. of
the 13th European Conf. on Logics in A.I. (JELIA 2012),
LNAI, 307–319. Springer.
Lord, P. W.; Stevens, R. D.; Brass, A.; and Goble, C. A.
2003. Investigating semantic similarity measures across the
gene ontology: The relationship between sequence and an-
notation. Bioinformatics 19(10):1275–1283.
Lutz, C., and Wolter, F. 2010. Deciding inseparability and
conservative extensions in the description logic EL. Journal
of Symbolic Computation 45(2):194–228.
Mistry, M., and Pavlidis, P. 2008. Gene ontology term over-
lap as a measure of gene functional similarity. BMC Bioin-
formatics 9.
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