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Abstract. Abstract Argumentation is a simple yet powerful formalism
for modeling the human reasoning and argumentation process. Vari-
ous semantics have been suggested with a view of arriving at coher-
ent outcomes of the argumentation process. Two categories of semantics
are well-known, extension-based semantics and labeling-based semantics.
Translations between semantics are an important area of interest that
enhance our understanding of the dynamics of various semantics and
their structural and semantic interrelationship. The application of trans-
lations to extension-based semantics has been investigated in detail in
the literature, however for labeling-based semantics which provide a more
fine grained notion of acceptability such translations have not yet been
studied. In this work, we fill this gab by investigating intertranslatability
of labeling-based semantics. We show in which cases the existing results
from the extension-based setting carry over to the labeling-based setting
and we investigate intertranslatability between the three unique status
semantics grounded, ideal and eager .
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1 Introduction

Argumentation theory and in particular abstract argumentation frameworks
have become a popular field in artificial intelligence. In an abstract argumenta-
tion framework (AF) as introduced by Dung in 1995 [6], one can model scenarios
with conflicting knowledge by considering only abstract entities called arguments
and a binary relation between them the so-called attack relation. The inherent
conflicts are solved on a semantical level usually by selecting sets of arguments,
so-called extensions which can be accepted together. An alternative view on the
semantics is in terms of labeling functions, where one assigns a label to each
argument, depending on the specific semantics, denoting if it should be accepted
(in), rejected (out) or undecided (undec) [5,13]. Thus, labeling-based semantics
give a more fine grained notion of the status of each argument.

The notion of intertranslatability for the extension-based semantics has been
investigated in much detail for most of the prominent semantics [8,9]. For two
semantics σ, σ′, intertranslatability involves translating an AF F to another AF
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F ′ through new arguments and new attacks between arguments such that the
σ-extensions of F are in a certain relation to the σ′-extensions of F ′. In case of
extensions one just needs to compare the sets of accepted arguments, however
when one considers labelings one needs to compare the status of each argument,
as the transformation of the AF might also change the status of the out and
undec labeled arguments.

Knowing about intertranslatability might become more and more important
when it comes to the use of argumentation systems for the evaluation. In partic-
ular if one has an efficient system for semantics σ but one wants to evaluate an
AF F w.r.t. semantics τ where no good implementations exits. Then, one would
be interested in translating F into F ′ such that the σ-labelings of F are in a
certain relation to the τ -labelings of F ′.

The development of efficient systems to evaluate argumentation frameworks
became a major topic. This is also reflected by the newly founded International
Competition on Computational Models of Argumentation (ICCMA) which took
place in 2015 for the first time [11]. Several argumentation systems use labeling-
based algorithms in their computation [10,13], thus knowing about intertrans-
latability for labeling-based semantics can contribute to the development for
such systems, or in the use of such systems.

The main contributions of this article are (i) the definition of exact, faith-
ful and weakly translations for the labeling-based semantics, according to the
intuition from [8,9]; (ii) we show under which conditions the results from the
extension-based setting carry over to the labeling-based setting, in particular for
the results on faithful translations we need to introduce an additional restric-
tion on the translation to preserve the status of arguments labeled with undec;
and (iii) we investigate intertranslatability between the unique-status semantics
grounded, ideal and eager [3,7].

This article is organized as follows. In Sect. 2 we introduce the necessary
background on abstract argumentation frameworks and the semantics in terms
of extensions and labelings. In Sect. 3 we define the different types of translations
for the labeling-based semantics, and in Sect. 4 we show which results from the
extension-based setting carry over to the labeling-based one. Then, in Sect. 5 we
analyze intertranslatability between the unique-status semantics grounded, ideal
and eager. Finally, in Sect. 6 we conclude and discuss future directions.

2 Preliminaries

In this chapter we introduce argumentation frameworks. We then define various
extension and labeling-based semantics. We also recall some results from other
works which shall prove useful in our investigations.

Argumentation Frameworks were introduced by Dung [6]. Formally, an argu-
mentation framework is a pair (A,R) where A is a set of arguments and
R ⊆ A × A is the attack relation. The relation (a, b) ∈ R means argument a
attacks argument b. Similarly, a set of arguments S ⊆ A attacks an argument
a ∈ A if and only if, ∃b ∈ S such that (b, a) ∈ R.
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Additionally, for a set S ⊆ A of arguments, we denote by S−, the set of all
arguments that attack S, i.e., S− = {b | ∃a ∈ S : (b, a) ∈ R}. For a set S ⊆ A
of arguments, we denote by S+ the set of all arguments which are attacked
by S, i.e., S+ = {b | ∃a ∈ S : (a, b) ∈ R}. For S ⊆ A and a ∈ A, we write
S → a, if there exists an argument b ∈ S such that (b, a) ∈ R. Furthermore,
an argument a is defended in an AF F by a set S ⊆ A if for every b ∈ A,
such that (b, a) ∈ R, S → b. Lastly, the range of a set S ⊆ A, denoted by
SR+, is defined as SR

+ = S ∪ {b | S → b}. Argumentation frameworks can
be represented as directed graphs with nodes representing arguments and edges
representing attacks. We now define extension-based semantics drawing upon
the works [1,2,6,12].

Let F = (AF , RF ) be an AF. A set S ⊆ A is conflict-free in F , if there are
no a, b ∈ S such that (a, b) ∈ R. For a conflict-free set S:

– S ∈ adm(F ), if each a ∈ S is defended by S;
– S ∈ prf(F ), if S ∈ adm(F ) and there is no T ∈ adm(F ) with S ⊂ T;
– S ∈ com(F ), if S ∈ adm(F ) and for each a ∈ A that is defended by S, a ∈ S;
– S ∈ grd(F ), if S ∈ com(F ) and there is no T ∈ com(F ) with T ⊂ S;
– S ∈ sem(F ), if S ∈ adm(F ) and there is no T ∈ adm(F ) with SR

+ ⊂ TR
+;

– S ∈ stb(F ), if for each a ∈ A \ S, S → a;
– S ∈ stg(F ), if there is no conflict-free set T in F , such that TR

+ ⊂ SR+;
– S ∈ idl(F ), if S ∈ adm(F ) and S is the biggest set (w.r.t. set inclusion) such
that for all T ∈ prf(F ), S ⊆ T;

– S ∈ eag(F ), if S ∈ adm(F ) and S is the biggest set (w.r.t. set inclusion) such
that for all T ∈ com(F ), S ⊆ T.

Where adm, prf, com, grd, sem, stb, stg, idl and eag stand for admissible, pre-
ferred, complete, grounded, semi-stable, stable, stage, ideal and eager semantics.

Labeling-based semantics start by assigning a label from a set of labels Λ =
{in, out, undec} to every argument in an AF F . The set of labels, Λ, stands for
accepted, rejected and undecided arguments respectively. The semantics then
selects labelings from the set of all possible labelings which it sees as representing
a coherent outcome of the conflicts in the AF. Another important notion is that
of ‘legally’ labeled.

– An in-labeled argument is said to be legally in if and only if all it’s attackers
are labeled out ;

– An out-labeled argument is said to be legally out if and only if at least one of
it’s attackers is labeled in;

– An undec-labeled argument is said to be legally undec if and only if not all it’s
attackers are labeled out and it does not have an attacker that is labeled in.

In this work, we will denote by L, possibly indexed, a single labeling and Lσ(F )
will represent the set of labelings for an AF F under a semantics σ.

We represent a labeling L for an AF F as a triple L =
(in(L), out(L), undec(L)) where in(L) = {a ∈ A | L(a) = in}; out(L) = {a ∈
A | L(a) = out}; undec(L) = {a ∈ A | L(a) = undec}. For the set of in-labeled
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arguments of a labeling L, in(L), we define in(L) ↓S , the reduction of in(L) to a
set S ⊆ AF of arguments as: in(L) ↓S= {in(L)∩ S}. out(L) ↓S and undec(L) ↓S
are defined similarly. For a set of labelings of an AF F under the semantics σ,
Lσ(F ), the reduction of this set of labelings to a set of arguments S, Lσ(F ) ↓S ,
is defined as: Lσ(F ) ↓S = {(in(L) ∩ S, out(L) ∩ S, undec(L) ∩ S) | L ∈ Lσ(F )}.

Let L1, L2 be two labelings for an argumentation framework F . We say that
L2 is more or equally committed than L1(L1 ⊑ L2) iff in(L1) ⊆ in(L2) and
out(L1) ⊆ out(L2). We can then characterize a labeling as being bigger or smaller
than another labeling with respect to ⊑ which is a partial order.

We now introduce certain specific labeling-based semantics. A labeling L for
an argumentation framework is said to be:

– Admissible if every in-labeled argument is legally in and every out-labeled
argument is legally out.

– Complete if for all arguments a ∈ A: a is labeled in iff it is legally in; a is
labeled out iff it is legally out ; a is labeled undec iff it is legally undecided .

– Grounded if L is a complete labeling and in(L) is minimal (w.r.t. set inclu-
sion) among all complete labelings.

– Preferred if L is a complete labeling and in(L) is maximal (with respect to
set inclusion) among all complete labelings.

– Semi-stable if L is a complete labeling and undec(L) is minimal (w.r.t set
inclusion) among all complete labelings.

– Stable if it is a complete labeling with undec(L) = ∅.
– Stage if it is a conflict-free labeling where undec(L) is minimal (w.r.t. set
inclusion) among all conflict-free labelings.

– Ideal if it is the biggest admissible labeling (with respect to the partial order
⊑) that is smaller than or equal to each preferred labeling.

– Eager if it is the biggest admissible labeling (with respect to the partial order
⊑) that is smaller than or equal to each semi-stable labeling.

Among these semantics, grounded , ideal and eager labelings are unique status
semantics in that they return a single, unique labeling for every AF. All other
semantics are multiple status semantics which return possibly multiple labelings
for every AF. Stable semantics is the only semantics that is not universally
defined.

We now briefly recall some results from previous works which will help us
in our investigations. From Caminada and Gabbay [5], we have that there is a
bijective correspondence between complete extensions and complete labelings. It
follows that for all completeness-based semantics, there is a bijective correspon-
dence between the extension(s) and the labeling(s) for that semantics. All the
semantics we consider in this work except admissible and stage semantics are
completeness-based. We also recall from Caminada [4] that stage extensions and
stage labelings are in a bijective correspondence. From Caminada [3], we have
that the ideal and eager extensions (and hence the ideal and eager labelings)
are also complete extensions (labelings). The proofs of these results are omitted
here.
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3 Translation Properties

By a translation, we mean an expansion of the source argumentation framework
with further arguments and attacks, giving rise to the target argumentation
framework. Formally, a translation Tr is defined as: Tr = (A∗, R∗) where A∗

is a set of additional arguments and R∗ is the set of additional attack relations
between arguments.

In this section, we first recall exactness and faithfulness properties of trans-
lations in the extension-based settings as defined in [9]. We then proceed to
define exactness and faithfulness properties for translations in labeling-based
semantics.

For two AFs F = (A,R) and F ′ = (A′, R′), F ⊆ F ′ if and only if A ⊆ A′

and R ⊆ R′. A translation Tr is called covering if for every AF F , F ⊆ Tr(F ).
A translation Tr is called embedding if for every AF F , AF ⊆ ATr(F ) and
RF = RTr(F ) ∩ (AF × AF ). We now recall the definitions of exactness and
faithfulness properties of translations in the extension-based setting from [9].
For two extension-based semantics σ and σ′, a translation Tr is called:

– Exact: if for every AF F , σ(F ) = σ′(Tr(F )).
– Weakly Exact: if there exists S a given finite collection of (remainder)
sets of arguments that are exclusively occurring in translated AFs, σ(F ) =
σ′(Tr(F )) \ S.

– Faithful: if for every AF F , σ(F ) = {E ∩AF | E ∈ σ′(Tr(F ))} and |σ(F )| =
|σ′(Tr(F ))|.

– Weakly Faithful: if there exists S a given finite collection of (remainder)
sets of arguments that are exclusively occurring in translated AFs, σ(F ) =
{E ∩ AF | E ∈ σ′(Tr(F )) \ S} and |σ(F )| = |σ′(Tr(F ))\S |.

We now define exactness and faithfulness for labeling-based semantics. Intu-
itively, by exactness we mean that the labelings of the source AF under the
semantics σ and those of the target framework under the semantics σ′ coincide.
Formally:

Definition 1. A translation Tr is called exact for semantics σ ⇒ σ′ if for
every AF F :

1. ∀L ∈ Lσ(F ): ∃L′ ∈ Lσ′(Tr(F )): in(L) = in(L′), out(L) = out(L′)↓AF
,

undec(L) = undec(L′)↓AF
.

2. |Lσ(F )| = |Lσ′(Tr(F ))|.

Definition 2. A translation Tr is called weakly exact for semantics σ ⇒ σ′ if
there exists a set of arguments Ap that are exclusively occurring in the translated
AFs and a finite set of partial labelings Lp of Ap such that for every AF F and
the remainder set L′ = {L ∈ Lσ′(Tr(F )) | ∃Lp ∈ Lp : L↓(Ap∩ATr(F ))

= Lp}:

1. ∀L ∈ Lσ(F ) : ∃L′ ∈ Lσ′(Tr(F )) \ L′ : in(L) = in(L′), out(L) =
out(L′)↓AF

, undec(L) = undec(L′)↓AF
.

2. |Lσ(F )| = |Lσ′(Tr(F )) \ L′|.
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Intuitively, by faithful translations we mean translations that retain the orig-
inal labelings of the source AF under the initial semantics. Formally:

Definition 3. A translation Tr is called faithful for semantics σ ⇒ σ′ if for
every AF F , Lσ(F ) = Lσ′(Tr(F ))↓AF

and |Lσ(F )| = |Lσ′(Tr(F ))|.

Definition 4. A translation Tr is called weakly faithful for semantics σ ⇒
σ′ if there exists a finite set of arguments Ap that are exclusively occurring in
the translated AFs and a finite set of partial labelings Lp of labelings Ap such
that for every AF F and the remainder set L′ = {L ∈ Lσ′(Tr(F )) | ∃Lp ∈
Lp : L↓(Ap∩ATr(F ))

= Lp}: Lσ(F ) = (Lσ′(Tr(F )) \ L′) ↓ AF and |Lσ(F )| =
|L′

σ(Tr(F )) \ L′|.

Example 1. We now present an example to demonstrate the workings of a weakly
faithful translation. Let F = ({a, b, c}, {(a, b), (b, c), (c, b)}) be an AF. The trans-
lation Tr3 [9] is defined as: Tr3(F ) = (A∗, R∗) where A∗ = AF ∪ {t} and
R∗ = RF ∪ {(a, t), (t, a) | a ∈ AF }. The F target framework obtained from
applying Tr3 to F is depicted in Fig. 1.

We have that Lstb(F ) = {{a, c}, {b}, ∅} and that Lstg(Tr3(F )) =
{({a, c}, {b}, ∅), ({t}, {a, b, c}, ∅)}. It is proven in [9] that Tr3 is weakly exact
for stb ⇒ stg in the extension-based setting. By Theorem2, we have that Tr3
is embedding and weakly exact for stb ⇒ stg in the labeling-based setting with
Ap = {t} and L′ = {({t}, {a, b, c}, ∅)}.

a b c

a b c

t

Fig. 1. The source AF F (left) and the target AF Tr3(F ) (right)

4 Extension-Based and Labeling-Based Semantics
Translation Comparison

Dvořák and Woltran [9] investigated intertranslatability between extension-
based semantics and defined the notions of exactness and faithfulness for
extension-based semantics. Having defined exactness and faithfulness for
labeling-based semantics, in this section we investigate the relationship between
the exactness and faithfulness of translations in extension-based setting to that
in labeling-based setting.
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First, we define a class of translations called reserved translations which will
help simplify our investigations. We need the notion of reserved translations in
order to be able to establish equivalence between faithfulness in extension-based
and labeling-based setting since a translation which is faithful in extension-based
setting maybe not be faithful in labeling-based because new arguments in the
translation may attack arguments which were undec in the original framework
and cause them to be out in the target framework. We say that a set of arguments
in an AF F constitutes a cycle iff every argument in the set is reachable via the
attack relation from every other argument in the set. The set of cycles of an AF
is denoted by cyc(F ). The length of a cycle C is denoted by lc. We define the
function Ψ(F ) as:

Ψ(F ) = {C ∈ cyc(F ) | ∀c ∈ A \ C, b ∈ C, (c, b) ∈ R : {c}− ̸= ∅}

An argument a ∈ A is cycle-reachable in F i.e. a ∈ cr(F ) iff one of the following
conditions holds true:

1. ∃C ∈ Ψ(F ) : a ∈ C
2. ∃C ∈ Ψ(F ) s.t. there exists a path from an argument b ∈ C to a and no

argument in the path is attacked by an argument which has no attackers.

The set of cycle-reachable arguments of an AF F is denoted by cr(F ).
Then reserved translations are translations where new arguments that attack

cycle-reachable arguments in the original AF cannot be labeled in under any
completeness-based semantics. For an AF F and a translation Tr = (A∗, R∗) we
define the function Ω(Tr(F )) as:

Ω(Tr(F )) = {a ∈ A∗ | ∃b ∈ cr(F ) : (a, b) ∈ R∗}

A translation Tr is called reserved iff one of the following conditions holds:

1. ∀a ∈ Ω(Tr(F )) : (a, a) ∈ R∗

2. ∀a ∈ Ω(Tr(F )) : ∃c ∈ A′ : (c, a) ∈ R∗, {c}− = ∅
3. ∀a ∈ Ω(Tr(F )) : a is cycle-reachable in Tr(F ).

Lemma 1. Let F = (AF , R) be an AF and let σ be a completeness-based seman-
tics. Then: ∀a ∈ AF : ∃L ∈ Lσ(F ) : L(a) = undec only if a is cycle-reachable
in F .

Proof. We do a proof by contradiction. Let a ∈ AF be an argument in F and
for a labeling L under a completeness-based semantics σ, let L(a) = undec and
let a be non cycle-reachable.

Since L(a) = undec, by definition we have that there exists an argument
b ∈ A such that (b, a) ∈ R and L(b) = undec. Now we have that either a attacks
b or b has an attacker c and L(c) = undec. In the first case we get that (a, b) is
a cycle and we have a contradiction. In the second case, we have that either b
attacks c or c has an attacker d and L(d) = undec. Again, in the first case we have
that (b, c) constitutes a cycle and we have a contradiction. In the second case, we
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have that either c attacks d or d has another undecided attacker. By the same
token, we have that either there exists an infinite chain of undecided arguments
or their exists an undecided argument xi which is attacked by an undecided
argument xi−1 which it also attacks. Since we confine ourselves to finite AFs,
we have that (xi, xi−1) constitutes a cycle and hence that a is cycle-reachable
which is a contradiction and this completes our proof. ⊓0

4.1 Exactness Comparison

We now derive the equivalences between translation properties in the extension-
based and labeling-based settings.

Theorem 1. Let σ, σ′ ∈ {com, grd, prf, sem, stb, idl, eag}. A embedding transla-
tion Tr is exact for σ ⇒ σ′ in the extension-based setting, if and only if Tr is
exact for σ ⇒ σ′ in the labeling-based setting.

Proof. ⇒: Let a translation Tr be exact for σ ⇒ σ′ in the extension-based
setting. Then, by definition, we have that for all AFs F , σ(F ) = σ′(Tr(F )).
Let in(Lσ(F )) be the set of in-labeled arguments (extensions) of F under the
semantics σ, i.e., in(Lσ(F )) = {in(L) | L ∈ Lσ(F )}. Let in(Lσ′(Tr(F ))) =
{in(L) | L ∈ Lσ′(Tr(F ))} be the same for the AF Tr(F ) and the semantics σ′.
Since σ(F ) = σ′(Tr(F )), we have that in(Lσ(F )) = in(Lσ′(Tr(F ))). Hence we
have that ∀L ∈ Lσ(F ) : ∃L′ ∈ Lσ′(Tr(F )) : in(L) = in(L′). We note that since
both σ, σ′ are completeness-based and that it is proven in [5] that there is a
bijective correspondence between complete extensions and complete labelings,
we can conclude that

∀L ∈ Lσ(F ) : ∃L′ ∈ Lσ′(Tr(F )) : (in(L) = in(L′), out(L) = out(L′)↓AF
,

undec(L) = undec(L′)↓AF
) and |Lσ(F ))| = |Lσ′(Tr(F ))|

which completes our proof.
⇐: We know from Caminada and Gabbay [5] that there is a bijective corre-

spondence between complete extensions and complete labelings and we have by
definition that σ, σ′ are completeness-based. Since σ(F ) = {in(L) | L ∈ Lσ(F )}
and σ′(F ) = {in(L) | L ∈ Lσ′(Tr(F ))} and since Tr is exact for σ ⇒ σ′ in the
labeling-based setting, it follows that Tr is exact for σ ⇒ σ′ in the extension-
based setting as well.

Theorem 2. Let σ, σ′ ∈ {com, grd, prf, sem, stb, idl, eag}. If an embedding trans-
lation Tr is weakly exact for σ ⇒ σ′ in the extension-based setting, then Tr is
weakly exact for σ ⇒ σ′ in the labeling-based setting.

Proof. Let Tr be a weakly exact translation in extension-based setting. By def-
inition we have that there exists a set S of arguments (remainder sets) occur-
ring exclusively in Tr(F ) such that σ(F ) = σ′(Tr(F )) \ S. By the fact that
there is a bijective correspondence between complete and stage extensions and
stage and complete labelings we have that |Lσ(F )| = |Lσ′(Tr(F )) \ L′| where



Intertranslatability of Labeling-Based Argumentation Semantics 163

L′ is the set of labelings in Tr(F ) corresponding to the set of extensions S.
By the fact that Tr is weakly exact in extension-based setting, we get that
in(Lσ(F )) = in(Lσ′(Tr(F )) \ L′). Since in(Lσ′(Tr(F )) \ L′) only contains orig-
inal arguments from F and Tr is embedding (i.e. that no additional arguments
between the original set of arguments are added) we get that out(Lσ(F )) =
out(Lσ′(Tr(F )) \ L′)↓AF

and that undec(Lσ(F )) = undec(Lσ′(Tr(F )) \ L′)↓AF

which completes our proof. ⊓0

4.2 Faithfulness Comparison

Theorem 3. Let σ, σ′ ∈ {com, grd, prf, sem, stb, idl, eag}. If a reserved transla-
tion Tr is faithful for σ ⇒ σ′ in the extension-based setting then Tr is faithful
for σ ⇒ σ′ in the labeling-based setting.

Proof. Let a translation Tr be faithful for σ ⇒ σ′ in the extension-based set-
ting. Then, by definition, we have that for all AFs F , σ(F ) = σ′(Tr(F ))↓AF

and |σ(F )| = |σ′(Tr)|. We note that since σ, σ′ are both completeness-based
and that it is proven in [5] that there is a bijective correspondence between com-
plete extensions and complete labelings and between stage extensions and stage
labelings, we get that |Lσ(F )| = |Lσ′(Tr(F ))|. By definition of faithfulness in
extension-based semantics, we have that in(Lσ(F )) = in(Lσ′(Tr(F )))↓AF

. By
definition of a reserved translation we have that new arguments in the translation
which attack cycle-reachable arguments in the original AF cannot be labeled in
under any completeness-based semantics. In other words, we get that the new
arguments added in Tr(F ) do not cause a potentially undecided argument in
F to become out in Tr(F ). By definition we have that out(Lσ(F )) = {x ∈ F |
(a, x) ∈ R, a ∈ in(Lσ(F ))} and out(Lσ′(Tr(F ))) = {x′ ∈ Tr(F ) | (a′, x′) ∈
R∗, a′ ∈ in(Lσ′(Tr(F )))}. Since in(Lσ(F )) = in(Lσ′(Tr(F )))↓AF

, we have that

out(Lσ(F )) = out(Lσ′(Tr(F )))↓AF
, undec(Lσ(F )) = undec(Lσ′(Tr(F )))↓AF

which completes our proof. ⊓0

Theorem 4. If a translation Tr is faithful for σ ⇒ σ′ in the labeling-based
setting then Tr is faithful for σ ⇒ σ′ in the extension-based setting.

Proof. Let a translation Tr be faithful for σ ⇒ σ′ in the labeling-based setting.
Then, by definition, we have that:

Lσ(F ) = Lσ′(Tr(F )) ↓AF and |Lσ(F )| = |Lσ′(Tr(F ))|. Reasoning from [5]
and [4], we have that σ(F ) = in(Lσ(F )) and σ′(Tr(F )) = in(Lσ′(Tr(F )))
and hence that Lσ′(Tr(F )) ↓AF= σ′(Tr(F )) ↓AF . It follows that σ(F ) =
σ′(Tr(F )) ↓AF and |σ(F )| = |σ′(Tr(F )) ↓AF | which completes our proof. ⊓0

Theorem 5. Let σ, σ′ ∈ {com, grd, prf, sem, stb, idl, eag}. If an embedding and
reserved translation Tr is weakly faithful for σ ⇒ σ′ in the extension-based
setting, then Tr is weakly faithful for σ ⇒ σ′ in the labeling-based setting.
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Proof. Let a translation Tr be weakly faithful for σ ⇒ σ′ in the extension-based
setting. Then, by definition we have that for all AFs F , there exists a set of
extensions S such that σ(F ) = σ′(Tr(F ))\S)↓AF

and that |σ(F )| = |σ′(Tr)\S|.
By the fact that there is a bijective correspondence between complete extensions
and complete labelings and between stage extensions and stage labelings, we get
that |Lσ(F )| = |Lσ′(Tr(F )) \ L′| where L′ is the set of labelings corresponding
to the extensions in S.

Since Tr is an embedded reserved translation, from the reasoning in proof
of Theorem3 and the fact that Tr is exact for σ ⇒ σ′ in the extension-based
setting, we get that

in(Lσ(F )) = in(Lσ′(Tr(F )) \ L′)↓AF
, out(Lσ(F )) = out(Lσ′(Tr(F )) \ L′)↓AF

undec(Lσ(F )) = undec(Lσ′(Tr(F )) \ L′)↓AF

which completes our proof. ⊓0

4.3 Equivalence Theorem Results

Having established equivalences between translation properties in extension-
based and labeling-based settings, we combine the equivalence theorems and the
results about extension-based translations in [9] and in [8] to arrive at results
about labeling-based translations. We present these results in table in Fig. 2. For
example, we have from [9] that Tr8 is exact for grd ⇒ prf in the extension-based
setting. By Theorem1 we get that Tr8 is exact for grd ⇒ prf in the labeling-
based setting as well. The naming and the numbering of translations follows the
scheme used in the original works mentioned above. Translations 3.7, 3.8, 3.9
and 3.12 are from [8] and the rest are from [9].

Fig. 2. Summary of exact/faithful translations for labeling-based semantics obtained
from equivalence theorems and results in [9] and [8]

5 Translations: Unique Status Semantics

We now introduce some translations related to the three unique status semantics
whose intertranslatability has not been studied: ideal , ground and eager .
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The first translation relates to ideal and eager semantics. For an AF F =
(AF , RF ), Tr1 is defined as: Tr1 = (A∗, R∗), where A∗ = AF ∪ {a′ | a ∈ AF }
and R∗ = RF ∪{(a, a′), (a′, a), (a′, a′) | a ∈ AF }. It is proven in [9] that Tr1 is an
embedding and exact translation for prf ⇒sem and adm⇒com in the extension-
based setting.

Theorem 6. The translation Tr1 is exact for the semantics idl⇒eag.

Proof. Recall the definition of exactness in labeling-based semantics from Page
4. Since both ideal and eager are unique status semantics by definition, i.e., that
for every AF F both return one unique labeling. Hence we have that |Lidl(F )| =
|Leag(Tr1(F ))| = 1 and Condition 2 is proven.

To prove Condition 1 , let L be the ideal labeling of F and L′ be the eager
labeling of Tr1(F ). Since all the additional arguments in Tr1 are self-attacking,
they do not appear in-labeled in any labeling of the AF Tr1(F ). Hence Tr1(F )
is essentially reduced to F . Let in(L) be the set of in-labeled arguments of L
and in(L′) be the same for L′. We have by definition [3] that: in(L) ⊆ in(L′).
We now identify two cases:

1. in(L) = in(L′): Then we have that out(L) = out(L′)∩AF and that undec(L) =
undec(L′) ∩ AF and hence, Condition 1 is proven.

2. in(L) ⊂ in(L′): Assume in(L) ⊂ in(L′). Then there exists an argument a ∈
AF such that a ∈ in(L) ⊂ in(L′)) but a /∈ in(L). Since a ∈ in(L′), by the def-

inition of eager semantics it follows that a ∈
i=n⋂
i=1

in(Li) : Li ∈ Lsem(Tr1(F )).

Since the translation Tr1(F ) is exact for prf ⇒sem, it follows that

i=n⋂

i=1

in(Li) : Li ∈ Lsem(Tr1(F )) =
i=n⋂

i=1

in(Li) : Li ∈ Lprf (Tr1(F ))

Hence we get that a ∈
i=n⋂
i=1

in(Li) : Li ∈ Lprf (Tr1(F )) and hence a ∈ in(L),

which is a contradiction to our assumption. Hence we get that in(L) = in(L′)
and by the reasoning in case 1 (above), we complete our proof. ⊓0

The next three results present negative results about translatability in unique
status semantics.

Theorem 7. There does not exist a covering, embedding and exact translation
for eag⇒grd in the labeling-based setting.

Proof. We do a proof by counter example. We provide an AF for which no
covering, embedding and exact translation exists for eag⇒grd . Consider the AF
F = (A,R) where: A = {a, b} and R = {(a, b), (b, a), (b, b)}.

Since we consider covering and embedding translations, we assume that the
original attacks between the original arguments are retained and no additional
attacks between them are added. Since Leag(F ) = ({a}, {b}, ∅), to prove that no
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exact translation exists it suffices to prove that for all covering and embedding
translations Tr′:

L1 = (∅, ∅, A∗) /∈ Lcom(Tr′(F )) −→ L2 = ({a}, {b...}, ...) /∈ Lcom(Tr′(F ))

This follows from that fact that if L1 is a complete labeling of Tr′(F ), then
by definition it is also the grounded labeling and our proof is complete. On the
other hand, if L1 is not a complete labeling of Tr′(F ), then we need to prove
that a labeling of the form L2 is not a complete labeling and hence cannot
be a grounded labeling of Tr′(F ), which would complete our proof. Assume
L2 = ({a}, {b...}, {...}) ∈ Lcom(Tr′(F )). Since L2(a) = in and knowing that the
translation is covering and embedding, we identify three cases:

1. the translation Tr′(F ) does not add any additional arguments that attack a.
Since Tr′(F ) is covering and embedding, the original attack relations between
a and b are retained. Since in(L2) = {a}, we get that b does not have any
in-labeled attackers. Since a and b have a mutual attack, we have that L1 =
(∅, ∅, A∗) ∈ Lcom(Tr′(F )) which contradicts our assumption.

2. the translation Tr′(F ) adds additional arguments that attack a, but those
arguments are labeled out . Then it follows that ∀x ∈ a−,∃t ∈ A∗ such that
(t, x) ∈ R∗ and L2(t) = in and hence in(L2) ̸= {a}, which is a contradiction.

3. the translation Tr′(F ) adds additional arguments with mutual attacks to a,
i.e., ∀x ∈ a−, (a, x) ∈ R∗. Then it follows that L1 = (∅, ∅, A∗) ∈ Lcom(Tr′(F ))
which contradicts our assumption. ⊓0

Theorem 8. There does not exist a covering, embedding and exact translation
for eag⇒idl semantics.

Proof. We do a proof by counter example. We provide an AF for which no
covering, embedding and exact translation exists for eag⇒idl in the labeling-
based setting. Consider the AF F = (A,R) where: A = {a, b, c, d, e} and R =
{(a, b), (b, a), (b, c), (c, d), (d, e), (e, c)} [3].

We have that Leag(F ) = ({b, d}, {a, c, e}, ∅) and that in(Leag(F )) = {b, d}.
Since by definition we have that for every AF F |Leag(F ))| = |Lidl(F ))| = 1, in
order to prove that there does not exist a covering, embedding and exact trans-
lation of F for eag⇒idl , we need to prove that for all covering and embedding
translations Tr′(F ): in(Leag(F )) ̸= in(Lidl(Tr′(F ))). It suffices to prove that for
all covering and embedding translations Tr′(F ):

∃L′ ∈ Lidl(Tr′(F )) s.t. b /∈ in(L′) and d /∈ in(L′)

Let Tr′(F ) be a covering and embedding translation and L = ({b, d}, {a, c,
e...}, {...}) ∈ Lidl(Tr′(F )). Then by definition of Preferred semantics, we have
that there does not exist a labeling L′ ∈ Lprf (Tr′(F )) such that in(L) ⊆ in(L′).
Since L({a, c, e}) = out, the construction of F and the covering and embedding
properties of Tr′(F ), we deduce that none of the additional arguments that
attack the original arguments may be have been added by Tr′(F ) can be labeled
in or undec. We now see that L′′ = ({a}, {b, ..}, {...}) is a complete labeling
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of Tr′(F ) and since in(L′′) ̸⊆ in(L′), L′′ is a preferred labeling of Tr′(F ). As
in(L′′) ∩ in(L′) ̸= {b, d}, we have that L = ({b, d}, {a, c, e...}, {...}) is not the
ideal labeling of Tr′(F ), which completes our proof. ⊓0

Theorem 9. There does not exist a covering, embedding and exact translation
for idl⇒grd.

Proof (Proof Sketch). We provide a proof sketch. We present the AF F = (A,R)
where: A = {a, b} and R = {(a, b), (b, a), (b, b)} as a counter-example. Since
Lidl(F ) = ({a}, {b}, ∅), by the same reasoning as in the previous proof we now
need to prove that: for every translation Tr′ = (A∗, R∗):

L1 = (∅, ∅, A∗) /∈ Lcom(Tr′(F )) −→ L2 = ({a}, {...}, {...}) /∈ Lcom(Tr′(F ))

The truth of the premise presents two cases: (1) there is an argument x ∈ Tr′(F )
such that (x, a) ∈ R∗ and x does not have any attackers and (2) all arguments
c ∈ a− are labeled out ; both of which lead to the conclusion. ⊓0

The next result relates to translatability between grounded and the other
two unique status semantics. We recall translation Tr3.8 [8] as Tr3.8 = (A∗, R∗)
where:

A∗ = AF ∪ {F̃i | Fi ⊆ F}
R∗ = RF ∪ {(F̃i, F̃i), (F̃i, a) | Fi ⊆ (A,R), a ∈ AFi \ in(Lgrd(Fi)}

It is proven in [8] that Tr3.8 is an embedding and exact translation for grd ⇒
{prf , com, sem} in extension-based setting. The target AF obtained by applying
Tr3.8 to the AF F = ({a, b}, {a, b}) is depicted in Fig. 3.

a b c d e

F̃

Fig. 3. The AF Tr3.8(F )

Theorem 10. The translation Tr3.8 is exact for grd⇒{idl, eag}.

Proof. We know from [9] that Tr3.8 is exact for grd⇒{com, prf , sem} in
the extension-based setting. Since grounded is a unique status semantics, we
have that, for every AF F , |grd(F )| = |com(Tr3.8(F ))| = 1 and grd(F ) =
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com(Tr3.8(F )). By definition, we have that com(Tr3.8(F )) = prf(Tr3.8(F )) =
sem(Tr3.8(F )) and hence com(Tr3.8(F )) = idl(Tr3.8(F )) = eag(Tr3.8(F )). We
get that, for all AFs F , grd(F ) = idl(Tr3.8(F )) = eag(Tr3.8(F )). Hence, we have
that, for all AFs F ,

in(Lgrd(F )) = in(Lidl(Tr3.8(F ))) = in(Leag(Tr3.8(F )))

and consequently that

out(Lgrd(F )) = out(Lidl(Tr3.8(F )))↓AF
= out(Leag(Tr3.8(F )))↓AF

and

undec(Lgrd(F )) = undec(Lidl(Tr3.8(F )))↓AF
= undec(Leag(Tr3.8(F )))↓AF

which completes our proof. ⊓0

Since ideal, eager and grounded are unique status semantics the notions
of weakly exact and weakly faithful are not applicable to intertranslatability
between these semantics.

6 Conclusion and Future Work

In this work, we built upon the investigations of Dvořák and Woltran [9] into
the inter-translatability of extension-based semantics. We began our investiga-
tions by defining exactness and faithfulness of translations in the labeling-based
setting. In order to establish faithfulness equivalence we defined a class of trans-
lations called reserved translations. We found that reserved translations which
are exact or faithful in the extension-based setting are also exact or faithful
in the labeling-based setting. This holds for all completeness based semantics.
We also took into account the relatively new unique status semantics such as
ideal and eager . We investigated and present results concerning the mutual inter-
translatability of these three unique status semantics, ideal , grounded and eager .

There are promising directions for further research regarding translatabil-
ity. One area of interest could be to examine the translatability of semantics in
other classes of argumentation frameworks such as Abstract Dialectic Frame-
works (ADF) especially the relationship between acceptance conditions of state-
ments and AF semantics and translations between these semantics. Secondly,
it would be interesting to explore translations between current semantics and
various newly suggested semantics such as cf2-semantics and resolution based
semantics in labeling-based setting.
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