
KNOWLEDGE GRAPHS

Lecture 5: Advanced Features of SPARQL

Markus Krötzsch

Knowledge-Based Systems

TU Dresden, 24th Nov 2020

https://iccl.inf.tu-dresden.de/web/Knowledge_Graphs_(WS2020/21)
https://iccl.inf.tu-dresden.de/web/Markus_Kr%C3%B6tzsch/en

Review

SPARQL:

• . . . is the W3C-standard for querying RDF graphs

• . . . at its core relies on basic graph patterns (BGPs)

• . . . returns sequences or multi-sets of partial functions (“solutions”)

Wikidata:

• . . . is a large, free knowledge graph & open community

• . . . can be viewed as a document-centric or graph-based database

• . . . provides an RDF-mapping, linked-data exports, and the SPARQL-based
Wikidata query service (WDQS)

In this lecture: many more SPARQL features

Markus Krötzsch, 24th Nov 2020 Knowledge Graphs slide 2 of 42

Property Paths

Markus Krötzsch, 24th Nov 2020 Knowledge Graphs slide 3 of 42

Paths for making connections
Knowledge graphs are about (indirect) connections – property paths are used to specify
conditions on them:

Example 5.1: Find all descendants of Johann Sebastian Bach:

PREFIX eg: <http://example.org/>

SELECT ?descendant
WHERE { eg:JSBach eg:hasChild+ ?descendant . }

More complex paths are possible:

Example 5.2: Find all descendants of Johann Sebastian Bach in an RDF graph
using no predicate hasChild but two predicates hasFather and hasMother:

PREFIX eg: <http://example.org/>

SELECT ?descendant
WHERE { eg:JSBach (ˆeg:hasFather|ˆeg:hasMother)+ ?descendant . }

The prefix ˆ reverses the direction of edge traversal, and | expresses alternative.

Markus Krötzsch, 24th Nov 2020 Knowledge Graphs slide 4 of 42

Paths for making connections
Knowledge graphs are about (indirect) connections – property paths are used to specify
conditions on them:

Example 5.1: Find all descendants of Johann Sebastian Bach:

PREFIX eg: <http://example.org/>

SELECT ?descendant
WHERE { eg:JSBach eg:hasChild+ ?descendant . }

More complex paths are possible:

Example 5.2: Find all descendants of Johann Sebastian Bach in an RDF graph
using no predicate hasChild but two predicates hasFather and hasMother:

PREFIX eg: <http://example.org/>

SELECT ?descendant
WHERE { eg:JSBach (ˆeg:hasFather|ˆeg:hasMother)+ ?descendant . }

The prefix ˆ reverses the direction of edge traversal, and | expresses alternative.

Markus Krötzsch, 24th Nov 2020 Knowledge Graphs slide 4 of 42

Property path syntax

SPARQL supports the following property paths, where iri is a Turtle-style IRI
(abbreviated or not) and PP is another property path:

Syntax Intuitive meaning

iri A path of length 1

PP* A path consisting of 0 or more matches of the path PP

PP+ A path consisting of 1 or more matches of the path PP

PP? A path consisting of 0 or 1 matches of the path PP

ˆPP A path consisting of a match of PP in reverse order

PP1 / PP2 A path consisting of a match of PP1, followed by a match of PP2

PP1 | PP2 A path consisting of a match of PP1 or by a match of PP2

!(iri1|· · · |irin) A length-1 path labelled by none of the given IRIs

!(ˆiri1|· · · |ˆirin) A length-1 reverse path labelled by none of the given IRIs

Note that ! cannot be applied to arbitrary property paths.
Markus Krötzsch, 24th Nov 2020 Knowledge Graphs slide 5 of 42

Property path syntax: precedence

• Parentheses can be used to control precedence.

• Negated property sets (!) must always be in parentheses, unless there is just one
element

• The natural precedence of operations is: ! � */+/? � ˆ � / � |

Example 5.3: The property path ˆ!ˆeg:p1*/eg:p2?|eg:p3+ is interpreted as
(((ˆ((!(ˆeg:p1))*))/(eg:p2?))|(eg:p3+)), where we note:

• the interpretation of !ˆeg:p1 is fixed and not subject to any precedence; it’s
simply a short form for the official syntax !(ˆeg:p1),

• the meaning of ˆ(iri*) is actually the same as the meaning of (ˆiri)*, so
this precedence is inessential,

• the meaning of (iri1/iri2)|iri3 is not the same as the meaning of
iri1/(iri2|iri3).

Markus Krötzsch, 24th Nov 2020 Knowledge Graphs slide 6 of 42

Property path patterns

Definition 5.4: A property path pattern is a triple 〈s, p, o〉, where s and o are ar-
bitrary RDF terms, and p is property path.

Note: As for triple patterns, this is an abstract notion, which is syntactically represented
by extending Turtle syntax to allow for property path expressions in predicate positions.

Example 5.5: Some property path patterns and their intuitive meaning:

1. ?x !(eg:p|eg:q)* ?y: pairs of resources that are connected by a directed
path of length ≥ 0 consisting of edges labelled neither eg:p nor eg:q

2. ?x eg:p/eg:p eg:o: resources connected to eg:o by an eg:p-path of
length 2; same as BGP ?x eg:p [eg:p eg:o]

3. ?x (!eg:p|!ˆeg:q)* ?y: pairs connected by a path of length ≥ 0 built
from forward edges not labelled eg:p and reverse edges not labelled eg:q

Warning: SPARQL allows (3) to be written as ?x !(eg:p|ˆeg:q)* ?y, which
is confusing since !(eg:p|ˆeg:q) has more matches than !(eg:p), whereas
!(eg:p|eg:q) has less.

Markus Krötzsch, 24th Nov 2020 Knowledge Graphs slide 7 of 42

Property path patterns

Definition 5.4: A property path pattern is a triple 〈s, p, o〉, where s and o are ar-
bitrary RDF terms, and p is property path.

Note: As for triple patterns, this is an abstract notion, which is syntactically represented
by extending Turtle syntax to allow for property path expressions in predicate positions.

Example 5.5: Some property path patterns and their intuitive meaning:

1. ?x !(eg:p|eg:q)* ?y: pairs of resources that are connected by a directed
path of length ≥ 0 consisting of edges labelled neither eg:p nor eg:q

2. ?x eg:p/eg:p eg:o: resources connected to eg:o by an eg:p-path of
length 2; same as BGP ?x eg:p [eg:p eg:o]

3. ?x (!eg:p|!ˆeg:q)* ?y: pairs connected by a path of length ≥ 0 built
from forward edges not labelled eg:p and reverse edges not labelled eg:q

Warning: SPARQL allows (3) to be written as ?x !(eg:p|ˆeg:q)* ?y, which
is confusing since !(eg:p|ˆeg:q) has more matches than !(eg:p), whereas
!(eg:p|eg:q) has less.

Markus Krötzsch, 24th Nov 2020 Knowledge Graphs slide 7 of 42

Property path semantics (1)

Recall the usual operations on languages L, L1, and L2:

• L1 ◦ L2 = {w1w2 | w1 ∈ L1, w2 ∈ L2}

• L0 = {ε} (the language with only the empty word ε)

• Li+1 = Li ◦ L and L∗ =
⋃

i≥0 Li

We recursively define a language path(PP) of words over (forward or reverse) predicates
for each property path expression PP as follows:
• path(iri) = {iri} and path(ˆiri) = {ˆiri}
• path(PP1/PP2) = path(PP1) ◦ path(PP2)
• path(PP*) = path(PP)∗ and path(PP+) = path(PP) ◦ path(PP)∗

• path(PP?) = {ε} ∪ path(PP)
• path(PP1|PP2) = path(PP1) ∪ path(PP2)
• path(ˆPP) = {inv(p`) · · · inv(p1) | p1 · · · p` ∈ path(PP)} where inv(iri) = ˆiri and

inv(ˆiri) = iri
• path(!(iri1|· · · |irin)) = {iri | iri < {iri1, . . . , irin}}

• path(!(ˆiri1|· · · |ˆirin)) = {ˆiri | iri < {iri1, . . . , irin}}

Markus Krötzsch, 24th Nov 2020 Knowledge Graphs slide 8 of 42

Property path semantics (1)

Recall the usual operations on languages L, L1, and L2:

• L1 ◦ L2 = {w1w2 | w1 ∈ L1, w2 ∈ L2}

• L0 = {ε} (the language with only the empty word ε)

• Li+1 = Li ◦ L and L∗ =
⋃

i≥0 Li

We recursively define a language path(PP) of words over (forward or reverse) predicates
for each property path expression PP as follows:
• path(iri) = {iri} and path(ˆiri) = {ˆiri}
• path(PP1/PP2) = path(PP1) ◦ path(PP2)
• path(PP*) = path(PP)∗ and path(PP+) = path(PP) ◦ path(PP)∗

• path(PP?) = {ε} ∪ path(PP)
• path(PP1|PP2) = path(PP1) ∪ path(PP2)
• path(ˆPP) = {inv(p`) · · · inv(p1) | p1 · · · p` ∈ path(PP)} where inv(iri) = ˆiri and

inv(ˆiri) = iri
• path(!(iri1|· · · |irin)) = {iri | iri < {iri1, . . . , irin}}

• path(!(ˆiri1|· · · |ˆirin)) = {ˆiri | iri < {iri1, . . . , irin}}

Markus Krötzsch, 24th Nov 2020 Knowledge Graphs slide 8 of 42

Property path semantics (2)

Using path(PP), we can now define the solution multiset of a property path pattern:

Definition 5.6: Given an RDF graph G and a property path pattern P = 〈s, pp, o〉,
a solution mapping µ is a solution to P over G if it is defined exactly on the vari-
able names in P and there is a mapping σ from blank nodes to RDF terms
such that G contains a path from µ(σ(s)) to µ(σ(o)) that is labelled by a word in
path(pp), where a label of the form ˆiri refers to a reverse edge with label iri.

The cardinality of µ in the multiset of solutions is the number of distinct such map-
pings σ. The multiset of all these solutions is denoted evalG(P), where we omit G
if clear from the context.

Note 1: We allow for empty paths here: they exist from any element to itself.

Note 2: We do not count the number of distinct paths: only existence is checked.

Note 3: This is actually wrong. SPARQL 1.1 sometimes counts some paths . . .

Markus Krötzsch, 24th Nov 2020 Knowledge Graphs slide 9 of 42

Property path semantics (2)

Using path(PP), we can now define the solution multiset of a property path pattern:

Definition 5.6: Given an RDF graph G and a property path pattern P = 〈s, pp, o〉,
a solution mapping µ is a solution to P over G if it is defined exactly on the vari-
able names in P and there is a mapping σ from blank nodes to RDF terms
such that G contains a path from µ(σ(s)) to µ(σ(o)) that is labelled by a word in
path(pp), where a label of the form ˆiri refers to a reverse edge with label iri.

The cardinality of µ in the multiset of solutions is the number of distinct such map-
pings σ. The multiset of all these solutions is denoted evalG(P), where we omit G
if clear from the context.

Note 1: We allow for empty paths here: they exist from any element to itself.

Note 2: We do not count the number of distinct paths: only existence is checked.

Note 3: This is actually wrong. SPARQL 1.1 sometimes counts some paths . . .

Markus Krötzsch, 24th Nov 2020 Knowledge Graphs slide 9 of 42

Counting paths
In general, counting paths is not feasible:

• If a graph has loops, there might be infinitely many distinct paths

• Even if we restrict to simple paths, the number of distinct paths grows exponentially

{ SPARQL 1.1 gave up most path counting, especially for * and +

However, SPARQL counts some paths nonetheless:

• Sequences are counted, e.g., ?s eg:p/eg:q ?o has the same solution multiset as
?s eg:p [eg:q ?o]

• Alternatives are counted, e.g., ?s eg:p|eg:q ?o may have multiplicities of 1 or 2
for each result

• Negation sets are also counted, e.g., ?s !eg:p ?o might have multiplicities > 1

Wrapping these path expressions into non-counted expressions “erases” the count:

Example 5.7: The property path pattern ?s (eg:p|eg:q) ?o may have solutions
with multiplicities 1 or 2, but the pattern ?s (eg:p|eg:q)? ?o can only have multi-
plicity 1 for any solution.

Markus Krötzsch, 24th Nov 2020 Knowledge Graphs slide 10 of 42

Property paths in BGPs

SPARQL allows the use of property path patterns among triple patterns.

Example 5.8: Find all descendants of Bach that were composers:

PREFIX eg: <http://example.org/>

SELECT ?descendant
WHERE {
eg:JSBach eg:hasChild+ ?descendant .

?descendant eg:occupation eg:composer .

}

The intuitive meaning of this should be clear.

Markus Krötzsch, 24th Nov 2020 Knowledge Graphs slide 11 of 42

Projection and Solution Set Modifiers

Markus Krötzsch, 24th Nov 2020 Knowledge Graphs slide 12 of 42

From patterns to queries

SELECT clauses

• specify the bindings that get returned (projection = removal of some bindings from
results)

• may define additional results computed by functions

• may define additional results computed by aggregates (see later)

Example 5.9: Find cities and their population densities:

SELECT ?city (?population/?area AS ?populationDensity)
WHERE {
?city rdf:type eg:city ;

eg:population ?population ;

eg:areaInSqkm ?area .

}

Markus Krötzsch, 24th Nov 2020 Knowledge Graphs slide 13 of 42

Projection and Duplicates

Projection can increase the multiplicity of solutions

Definition 5.10: The projection of a solutions mapping µ to a set of variables V is
the restriction of the partial function µ to variables in V. The projection of a solu-
tion sequence is the set of all projections of its solution mappings, ordered by the
first occurrence of each projected solution mapping.

The cardinality of a solution mapping µ in a solution Ω is the sum of the cardinali-
ties of all mappings ν ∈ Ω that project to the same mapping µ.

Note: This definition also works if additional results are defined by functions or
aggregates. Solution mappings are extended first by adding the bound variables, and
then subjected to projection.

The keyword DISTINCT can be used after SELECT to remove duplicate solutions
(=to set multiplicity of any element in the result to 1)

Markus Krötzsch, 24th Nov 2020 Knowledge Graphs slide 14 of 42

Solution set modifiers
SPARQL supports several expressions after the query’s WHERE clause:
• ORDER BY defines the desired order of results

– Can be followed by several expressions (separated by space)
– May use order modifiers ASC() (default) or DESC()

• LIMIT defines a maximal number of results

• OFFSET specifies the index of the first result within the list of all results

Both LIMIT and OFFSET should only be used on explicitly ordered results

Example 5.11: In Wikidata, find the largest German cities, rank 6 to 15:

SELECT ?city ?population

WHERE {
?city wdt:P31 wd:Q515 ; # instance of city

wdt:P17 wd:Q183 ; # country Germany

wdt:P1082 ?population # get population

} ORDER BY DESC(?population) OFFSET 5 LIMIT 10

Markus Krötzsch, 24th Nov 2020 Knowledge Graphs slide 15 of 42

Aggregates

Markus Krötzsch, 24th Nov 2020 Knowledge Graphs slide 16 of 42

Grouping and aggregates

Aggregate functions compute values from multisets of solution mappings (rather than
from individual mappings)

Grouping is used to split a multiset of solutions into several multisets based on some key
that is computed for each solution

Example 5.12: In Wikidata, find the ten most common professions of people born
in Dresden:

SELECT ?job (COUNT(?person) as ?count)

WHERE {
?person wdt:P19 wd:Q1731 ; # born in: Dresden

wdt:P106 ?job . # occuptation: ?job

} GROUP BY ?job
ORDER BY DESC(?count) LIMIT 10

Note: we can select non-aggregate terms used for grouping (since they are the
same across the whole group!).

Markus Krötzsch, 24th Nov 2020 Knowledge Graphs slide 17 of 42

SPARQL aggregate functions

SPARQL offers several aggregate functions:

• COUNT: count the sum of all multiplicities of solutions

• SUM: sum up numeric values

• AVG: compute the average of numeric values

• MIN/MAX: compute the minimum/maximum (over any type of term)

• SAMPLE: non-deterministically get one value from all values (no probability
distribution implied)

• GROUP_CONCAT: concatenate string values into one large string (in any order)

All aggregate functions receive one expression as parameter, e.g., SUM(?population)
or MIN(year(?birthdate)).

All aggregates optionally accept DISTINCT before the parameter to indicate that
duplicates should be eliminated from the multiset of expression results before applying
the aggregate.

Markus Krötzsch, 24th Nov 2020 Knowledge Graphs slide 18 of 42

HAVING

The keyword HAVING is used to specify a filter condition on mappings produces by
aggregation (we will discuss filters in detail later):

Example 5.13: In Wikidata, find all professions of more than 100 people born in
Dresden:

SELECT ?job (COUNT(?person) as ?count)

WHERE {
?person wdt:P19 wd:Q1731 ; # born in: Dresden

wdt:P106 ?job . # occuptation: ?job

} GROUP BY ?job
HAVING (COUNT(?person) > 100)

Markus Krötzsch, 24th Nov 2020 Knowledge Graphs slide 19 of 42

Filters

Markus Krötzsch, 24th Nov 2020 Knowledge Graphs slide 20 of 42

Filters

Filters are SPARQL query expressions that can express many conditions that are not
based on the RDF graph structure:

• Numeric and arithmetic comparisons

• Datatype-specific conditions (e.g., comparing the year of a date)

• String matching (sub-string comparison, regular expression matching, . . .)

• Type checks and language checks

• Logical combinations of conditions

• Check for non-existence of certain graph patterns

• . . .

They are marked by the FILTER keyword.

Markus Krötzsch, 24th Nov 2020 Knowledge Graphs slide 21 of 42

Example

Example 5.14: From Wikidata, find out where in Germany towns have names
ending in “-ow” or “-itz”:

SELECT ?item ?itemLabel ?coord WHERE {
?item wdt:P31/wdt:P279* wd:Q486972;

instances of (subclasses of) human settlement

wdt:P17 wd:Q183; # country: Germany

rdfs:label ?itemLabel; # get a label

wdt:P625 ?coord # get coordinates

FILTER (lang(?itemLabel) = "de") # label should be German ...

FILTER regex (?itemLabel, "(ow|itz)$") # ... and end in -ow or -itz

}

Note: Filters are not Turtle syntax and don’t require . as separators.
But software will usually tolerate additional . before or after FILTER clauses.

Markus Krötzsch, 24th Nov 2020 Knowledge Graphs slide 22 of 42

How filters work

Rule 1: Filters cannot produce new answers or bind unbound variables.

• They just “filter” given answers by eliminating solutions that don’t satisfy a condition

• Answers are eliminated, never added

• Filter conditions only make sense on variables that occur in the pattern

Rule 2: The position of filters within a pattern is not relevant

• The filter condition always refers to answers to the complete pattern (not to parts)

• The relative order of several filters does not change the final outcome

• Implementations will optimise order (apply selective filters as early as possible)

Markus Krötzsch, 24th Nov 2020 Knowledge Graphs slide 24 of 42

How filters work

Rule 1: Filters cannot produce new answers or bind unbound variables.

• They just “filter” given answers by eliminating solutions that don’t satisfy a condition

• Answers are eliminated, never added

• Filter conditions only make sense on variables that occur in the pattern

Rule 2: The position of filters within a pattern is not relevant

• The filter condition always refers to answers to the complete pattern (not to parts)

• The relative order of several filters does not change the final outcome

• Implementations will optimise order (apply selective filters as early as possible)

Markus Krötzsch, 24th Nov 2020 Knowledge Graphs slide 24 of 42

Available filter conditions (1)

SPARQL supports many different filter conditions.

Comparison operators

• The familiar =, !=, <, >, <=, and >= are all supported

• Comparison of order are specific to the datatype of the element (the order on dates
is different from the order on numbers etc.)

• = and != compare to values (from the value space), not just syntactic forms

• Not all pairs of resources of distinct type might be comparable ({ error)

RDF-specific operators

• isIRI, isBlank, isLiteral test type of RDF term

• isNumeric checks if a term is a literal of a number type

• bound checks if a variable is bound to any term at all

• sameTerm checks if two terms are the same (not just equal-valued)

Markus Krötzsch, 24th Nov 2020 Knowledge Graphs slide 25 of 42

Available filter conditions (2)

SPARQL supports many different filter conditions.

String operators

• StrStarts, StrEnds, Contains test if string starts with/ends with/contains another

• RegEx checks if a string matches a regular expression

• langMatches checks if a string is a language code from given range of languages

Boolean operators

• Conditions can be combined using && (and), || (or), and ! (not)

• Parentheses can be used to group conditions

Markus Krötzsch, 24th Nov 2020 Knowledge Graphs slide 26 of 42

Functions in filters
Besides comparing constant terms and the values of given variables, filters can also
include other function terms that compute results.

Arithmetic functions
The usual +, *, - (unary and binary), / are available, as well as abs, ceil, floor, round

String functions
These include SubStr, SubLen, StrBefore, StrAfter, Concat, Replace, and others

RDF term functions
Extract part of a term (datatype, lang); convert terms to other kinds of terms (str,
iri, bnode, strDt, strLang, . . .)

Date/time functions
Extract parts of a date: year, month, day, hour, . . .

Logical functions
IF evaluates a term conditionally; COALESCE returns from a list of expressions the value
of the first that evaluates without error; IN and NOTIN check membership of a term in a
list
Markus Krötzsch, 24th Nov 2020 Knowledge Graphs slide 27 of 42

NOT EXISTS
SPARQL supports testing for absence of patterns in a graph using NOT EXISTS:

Example 5.15: From Wikidata, find out how many (known) living people are born
in Dresden:

SELECT (COUNT(*) as ?count) WHERE {
?person wdt:P19 wd:Q1731 . # born in Dresden

FILTER NOT EXISTS { ?person wdt:P570 [] } # no date of death

}

Any SPARQL query pattern can be used inside this filter.
This provides a form of negation in queries.

Variables in the pattern have a special meaning:

• variables bound in the filtered answer (for the surrounding pattern) are interpreted
as in the answer

• unbound variables are interpreted as actual variables of the test query
Markus Krötzsch, 24th Nov 2020 Knowledge Graphs slide 28 of 42

Errors and effective boolean values

Observation:

• Many filter operations and functions only make sense for certain types of terms
(e.g., year requires a date).

• RDF allows almost all kinds of terms in almost all positions.

{ variables might be bound to terms for which a filter makes no sense

Solution:

• Filter operations and functions might return “error” as a special value

• SPARQL defines how errors propagate
Example: “true || error = true” but “true && error = error”

• Filters and boolean functions may use non-boolean inputs: in this case they
assume their effective boolean value (EBV) as defined in the specification
Example: numbers equivalent to 0 have EBV “false”, other numbers have EBV “true”
Example: empty strings have EBV “false”, other strings have EBV “true”
Example: errors have EBV “false”

Markus Krötzsch, 24th Nov 2020 Knowledge Graphs slide 29 of 42

Groups, Union, Minus, Optional, Subqueries

Markus Krötzsch, 24th Nov 2020 Knowledge Graphs slide 30 of 42

Groups

So far, all of our queries had a single pattern consisting of

• triple patterns

• property path patterns

• filters

When introducing further features, we will often have to group them:
this is done with braces { . . . }

Terminology: A query part within braces is called a group graph pattern in
SPARQL.

We were already using group graph patterns in all queries: the part after WHERE is one

Semantically, results of juxtaposed group graph patterns are combined using Join.

Markus Krötzsch, 24th Nov 2020 Knowledge Graphs slide 31 of 42

Union

The UNION operator allows us to obtain the union of the results of two group graph
patterns.

Example 5.16: In Wikidata, find everybody who is a composer by occupation or
who has composed something:

SELECT ?person
WHERE {
{ ?person wdt:P106 wd:Q36834 } # ?person occupation: composer

UNION
{ ?music wdt:P86 ?person } # ?music composer: ?person

}

UNION produces the union of results and adds up multiplicities

{ using DISTINCT might be necessary

Markus Krötzsch, 24th Nov 2020 Knowledge Graphs slide 32 of 42

Minus

The MINUS operator allows us to remove the results of one group graph pattern from the
results of another.

Example 5.17: In Wikidata, find living people who are composers by occupation:

SELECT ?person
WHERE {
{ ?person wdt:P106 wd:Q36834 } # ?person occupation: composer

MINUS
{ ?person wdt:P570 [] } # ?person date of death: some value

}

Similar results can often be achieved with FILTER NOT EXISTS, but the two are used
differently:

MINUS and FILTER NOT EXISTS behave differently, e.g., when applied to group graph
patterns that do not share any variables.

Markus Krötzsch, 24th Nov 2020 Knowledge Graphs slide 33 of 42

Optional

The OPTIONAL operator is used to extend solution mappings with additional, optional
information.

Example 5.18: In Wikidata, find composers, and, optionally, their spouses:

SELECT ?person ?spouse

WHERE {
?person wdt:P106 wd:Q36834 # ?person occupation: composer

OPTIONAL { ?person wdt:P26 ?spouse } # ?person spouse: ?spouse

}

Solutions for queries with OPTIONAL may leave some query variables unbound (people
without spouses in the example).

Note: Like FILTER, OPTIONAL patterns are used inside one group graph pattern,
together with triple patterns etc.

Markus Krötzsch, 24th Nov 2020 Knowledge Graphs slide 34 of 42

Subqueries

Subqueries are used to use results of other queries within queries, typically to achieve
results that cannot be accomplished using other patterns.

Example 5.19: In Wikidata, find universities located in one of the 15 largest Ger-
man cities:

SELECT DISTINCT ?university ?city

WHERE {
{ SELECT DISTINCT ?city ?population

WHERE { ?city wdt:P31/wdt:P279* wd:Q515 ; # instance of: city

wdt:P17 wd:Q183 ; # country: Germany

wdt:P1082 ?population . # population: ?population

} ORDER BY DESC(?population) LIMIT 15 # get top 15 by ?population

}

?university wdt:P31/wdt:P279* wd:Q3918 ; # instance of: university

wdt:P131+ ?city . # located in+: ?city

}

Markus Krötzsch, 24th Nov 2020 Knowledge Graphs slide 35 of 42

Interpretation of subqueries

The result multiset of the subquery is simply used like the result of any other (sub) group
graph pattern.

Notes:

• The order of results from subqueries is not conveyed to the enclosing query
(subqueries return multisets, not sequences).

• The use of ORDER BY is still meaningful to select top-k results by some ordering.

• Only selected variable names are part of the subquery result; other variables might
be hidden from the enclosing query

Markus Krötzsch, 24th Nov 2020 Knowledge Graphs slide 36 of 42

Values and Bind

Markus Krötzsch, 24th Nov 2020 Knowledge Graphs slide 37 of 42

Defining own values

It is often useful to add bindings to results that do not come directly from the database:

• Predefine batches of (tuples of) constants{ VALUES

• Define derived values by applying functions to query results{ BIND

Both constructs behave slightly differently.

Markus Krötzsch, 24th Nov 2020 Knowledge Graphs slide 38 of 42

Values
VALUES is used to inject pre-defined result multisets into the query evaluation.

Example 5.20: In Wikidata, find people who are composers, or musicians, or who
play some instrument:

SELECT DISTINCT ?item
WHERE {
VALUES (?predicate ?value) { # define values for two variables

(wdt:P106 wd:Q36834) # occupation / composer

(wdt:P106 wd:Q639669) # occupation / musician

(wdt:P1303 UNDEF) # instrument played / any

}

?item ?predicate ?value

}

The VALUES expression defines three solution mappings, two of which are defined
for variable names predicate and value, and one defined for predicate only.

Note: One may leave away the (. . .) if values are given for just one variable.
Markus Krötzsch, 24th Nov 2020 Knowledge Graphs slide 39 of 42

Interpretation and usage of VALUES

VALUES behaves just like a subquery with the specified result.

• As with subqueries, order does not matter.

• The special value UNDEF is used to signify that a variable should be unbound for a
solution mapping

• Otherwise, only IRIs or literals can be used in VALUES – especially no functions

In practice, the most important use of VALUES is to encode batch queries that ask
for many possible options in a single query. Using this to ask about, say, 100 pos-
sible values in one query is much more efficient than sending 100 small queries
or using nested UNION with 100 possibilities.

Markus Krötzsch, 24th Nov 2020 Knowledge Graphs slide 40 of 42

Bind
BIND is used to assign a computed value to a variable.

Example 5.21: Find cities and their population densities:

SELECT ?city ?populationDensity

WHERE {
?city rdf:type eg:city ;

eg:population ?population ;

eg:areaInSqkm ?area .

BIND (?population/?area AS ?populationDensity)
}

BIND can be used instead of expression assignments with AS in SELECT

However, variables assigned with BIND can already be used in the query pattern, but not
before they were assigned.

Assignments of constants to variables are better realised with VALUES, which can be
used before or after other patterns using the variable.
Markus Krötzsch, 24th Nov 2020 Knowledge Graphs slide 41 of 42

Summary

Property Path Patterns are used to describe (arbitrarily long) paths in graphs

Filters can express many conditions to eliminate some of the query results

Solution set modifiers define standard operations on result sets

Important SPARQL query operators are UNION, MINUS, OPTIONAL, BIND, and VALUES

Aggregates are used to obtain answers that combine several solutions.

What’s next?

• Algebra operations for defining the SPARQL semantics

• SPARQL complexity and implementation

• Expressive limits of SPARQL

Markus Krötzsch, 24th Nov 2020 Knowledge Graphs slide 42 of 42

