Lecture 1: Welcome/Introduction/Overview Concurrency Theory

Summer 2024

Dr. Stephan Mennicke

April 8th, 2024

TU Dresden, Knowledge-Based Systems Group

Welcome to *Concurrency Theory* in Summer 2024

Welcome to *Concurrency Theory* in Summer 2024.

Organizational Issues

Room, Time, URL

1. Sessions:

Tuesdays DS2 (9:20–10:50) in APB/E005 Wednesdays DS3 (11:10–12:40) in APB/E005

2. No sessions:

- May 1 (labor day)
- May 21 & 22 (Pentecost week)
- June 5 (dies academicus)

3. Website:

https://iccl.inf.tu-dresden.de/web/Concurrency_Theory_(SS2024) (slides, literature, etc.)

4. Matrix (Chat):

https://matrix.to/#/#concur:tu-dresden.de

5. Examination:

- *oral examination* (20-25 minutes)
- registration depending on your study/exam regulations

Dr. Stephan Mennicke

→ planned as *lectures*→ planned as *exercises*

Wednesday

Wednesday

Introduction

Concurrency Theory = study of the *semantics* of *concurrent* languages or systems. → several activities (the *processes*) may run concurrently

Central Questions:

- 1. What is a *process*, mathematically?
- 2. What does it mean for two processes to be *equal*?
 - seek notions of equality that are effective
 - equality must be justifiable, according to the notion of *process*

First, **no** concurrency = sequential (programming) languages

Main Tool (since the 1970s):

denotational semantics = programs are functions

- concepts are clear for functional languages (e.g., the λ -calculus)
- also applicable to imperative languages

How? \rightarrow next lectures

Example 1: Consider the following two program fragments:

X := 2 and X := 1; X := X+1

They yield the same *function* f. Informally, if f is applied to store $s : \text{Var} \to \mathbb{N}$, then store $s' : \text{Var} \to \mathbb{N}$ is produced such that s'(X) = 2 and s'(X) = s(Y) for all variables $Y \neq X$.

Consequence: Programs are *equal* if they have the same denotation.

Dr. Stephan Mennicke

Now with Concurrency

Examples are troublesome in languages with concurrency features: $P \parallel Q$ means program P runs concurrently with program Q. \Rightarrow intuitively, $P \parallel Q$ is the *parallel composition* of P and Q

Example 2: Now consider the programs in the *parallel context* $[\cdot] \parallel X := 2$. Then

X := 2 || X := 2

always terminates with X set to 2 while

 $(X := 1; X := X+1) \parallel X := 2$

may terminate with values different from 2.

Consequence 1: Function equality is not preserved by *parallel composition*.

Consequence 2: Parallel programs are not functions, they are *processes*.

The Goal is Compositionality

Dr. Stephan Mennicke

- allows to exploit the structure of the language for reasoning
- inference of properties from components to larger systems
- optimization of program components

We aim for a *compositional semantics*.

On the level of equality (i.e., equivalences) we are looking for *congruences*.

Nontermination as a Feature

- concurrent programs may not terminate and yet produce meaningful computations
 - operating systems
 - controllers of railway stations
- in sequential languages, programs that do not terminate have *mathematically* undefined (i.e., undesirable or wrong) behavior

Nondeterminism

- nondeterministic behavior is everywhere in concurrent systems
- sequential languages use powerset or powerdomain constructions
 ->> quickly becomes cumbersome
- if nondeterminism is a language feature, then we cannot distinguish it from concurrency features

The example programs

X := 2 and X := 1; X := X+1

should be distinguished because of their *interaction* with the memory. The difference between them is harmless in sequential languages: Why?

New keyword: *interaction*

- computation = interaction (in concurrency)
- examples:
 - access to memory cells
 - queries to databases
 - selection of a beverage at a vending machine

- participants in interactions are called *processes*
- the *behavior* of a process should tell
 - the *When*?
 - and *How?* of interaction with the environment
- need a mathematically precise model of behavior
- interaction is kept simple: handshake synchronization

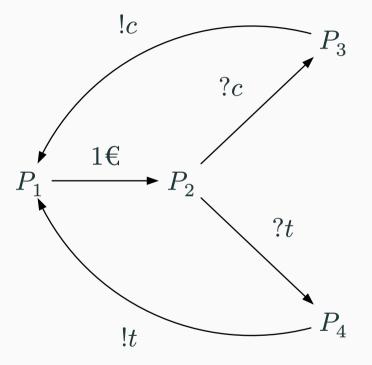
The *vending machine* is capable of dispensing coffee or tea for 1€.

- it has a slot for the coin $(1 \in)$;
- it has a button for picking coffee (*c*);
- and another button for requesting tea (t)

The **main model** we use throughout the lecture is that of *labeled transition systems* (LTS):

- state information
- for each state, what interactions are possible

The Vending Machine as an LTS



- states are P_1, P_2, P_3 , and P_4
- labeled edges (i.e., *transitions*) tell us about the possible interactions

Dr. Stephan Mennicke

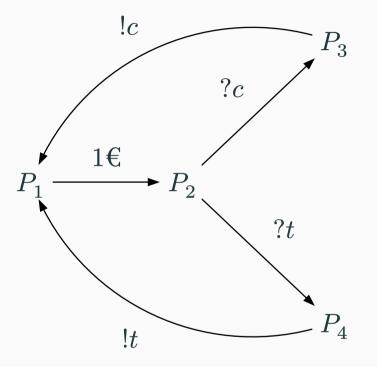
Definition 3 (Labeled Transition System): A *labeled transition system* (LTS) is a triple (\Pr, Act, \rightarrow) where \Pr is a non-empty set, the *domain* of the LTS; Act is the set of *actions*; and $\rightarrow \subseteq \Pr \times Act \times \Pr$ is the *transition relation*.

The elements of Pr are sometimes called *states*, more often *processes*.

Processes range over by $P, P_1, P_2, ...$ and Q or R, actions usually by $\mu, \mu_1, \mu_2, ...$ We write $P \xrightarrow{\mu} Q$ for $(P, \mu, Q) \in \rightarrow$. For every action $\mu \in \operatorname{Act}, \xrightarrow{\mu}$ is a binary relation over Pr. If $s = \mu_1 \mu_2 ... \mu_k$, then $P \xrightarrow{s} P'$ if there are $P_1, P_2, ..., P_{k-1} \in \operatorname{Pr}$ such that $P \xrightarrow{\mu_1} P_1, P_1 \xrightarrow{\mu_2} P_2, ..., P_{k-1} \to P'$. Write $P \xrightarrow{\mu}$ if there is a P' such that $P \xrightarrow{\mu} P'$ and $P \xrightarrow{\mu}$ if there is none.

Dr. Stephan Mennicke

The Vending Machine as an LTS



$$\begin{split} \text{This is the LTS } V &= (\Pr, \operatorname{Act}, \rightarrow) \text{ where } \Pr = \{P_1, P_2, P_3, P_4\}, \operatorname{Act} = \{1 {\ensuremath{\in}}, ?c, ?t, !c, !t\}, \\ \text{and} &\rightarrow = \{(P_1, 1 {\ensuremath{\in}}, P_2), (P_2, ?c, P_3), (P_2, ?t, P_4), (P_3, !c, P_1), (P_4, !t, P_1)\} \end{split}$$

Dr. Stephan Mennicke

Definition 4 (Induced LTS): Let *L* be an LTS and *P* a process of *L*. The *induced LTS* by *P* is the smallest LTS *L'* (with domain Pr) such that $P \in Pr$, Act is the same action set as for *L*, and if $Q \in Pr$ and there is a transition $Q \xrightarrow{\mu} Q'$ in *L*, then $Q' \in Pr$ and $Q \xrightarrow{\mu} Q'$ is a transition of *L'*.

Definition 5 (LTS Classes): An LTS is

- *image-finite* if for each μ , relation $\stackrel{\mu}{\rightarrow}$ is image-finite (i.e., for all P, the set $\left\{ P' \middle| P \stackrel{\mu}{\rightarrow} P' \right\}$ is finite);
- *finitely branching* if it is image-finite and, for each *P*, the set $\left\{ \mu \mid P \xrightarrow{\mu} \right\}$ is finite;
- *finite-state* if it has a finite number of states;
- *finite* if it is finite-state and acyclic;
- *deterministic* if all processes are deterministic (i.e., for P and μ , $P \xrightarrow{\mu} P_1$ and $P \xrightarrow{\mu} P_2$ implies $P_1 = P_2$)

Dr. Stephan Mennicke

Summary and Overview

- denotations as sound basis for *sequential* programming language semantics
- denotations insufficient when concurrency is involved
 - computation is interaction
 - interaction between processes
- labeled transition systems (Definition 3) as **the** model for behavior
 - basic notions and notations
 - classes of LTSs and processes (Definition 5)

Overview

Part 0: Completing the Introduction (next)

• learning about *bisimilarity* and *bisimulations*

Part 1: Semantics of (Sequential) Programming Languages

- WHILE an old friend
- denotational semantics (a baseline and an exercise of the inductive method)
- natural semantics and (structural) operational semantics

Part 2: Towards Parallel Programming Languages

- bisimilarity and its success story
- deep-dive into induction and coinduction
- algebraic properties of bisimilarity

Part 3: Expressive Power

- Calculus of Communicating Systems (CCS)
- Petri nets

- Sangiorgi, D. (2012). Introduction to bisimulation and coinduction. Cambridge University Press.
- Esparza, J. **Petri Nets Lecture Notes** from a course given at TU Munich https://archive. model.in.tum.de/um/courses/petri/SS2019/PNSkript.pdf
- Reisig, W. (2013). Understanding Petri Nets. Springer Berlin Heidelberg.
- Sangiorgi, D., & Walker, D. (2003). The pi-calculus: a theory of mobile processes. Cambridge University Press.
- Milner, R. (1980). A calculus of communicating systems. Springer Berlin Heidelberg.
- Milner, R. (1999). Communicating and mobile systems. Cambridge University Press.
- Davide Sangiorgi (2012). Advanced topics in bisimulation and coinduction.
 Cambridge University Press.

Dr. Stephan Mennicke