

Hannes Strass (based on slides by Bernardo Cuenca Grau, Ian Horrocks, Przemysław Wałęga)
Faculty of Computer Science, Institute of Artificial Intelligence, Computational Logic Group

Introduction and Overview

Lecture 1, 14th Oct 2024 // Foundations of Knowledge Representation, WS 2024/25

 seats on an aeroplane

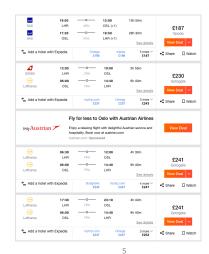
- seats on an aeroplane
- account transactions

- seats on an aeroplane
- account transactions
- tall buildings

British Airways Seat Maps

Airbus A319 (319) Domestic VI

Name •	City •	State •	Height ◆	Feet •	Floors •	Completed 4
Federation Tower: East Tower	Moscow	- Russia	373.7	1,226	95	2016
OKO: South Tower	Moscow	- Russia	354.1	1,162	85	2015
Mercury City Tower	Moscow	- Russia	338.8	1,112	75	2013
The Shard ^[1]	London	Chited Kingdom	309.7	1,017	87	2012
Eurasial ²	Moscow	- Russia	308.9	1,014	72	2014
CoC: Moscow Tower ⁽³⁾	Moscow	- Russia	301.6	990	76	2010
Skyland Istanbul 1 ⁽⁴⁾⁽⁵⁾	Istanbul	C Turkey	293.1	932	65	2017
Skyland Istanbul 2 ^[485]	Istanbul	C Turkey	293.1	932	65	2017
Metropol İstanbul ^[6]	Istanbul	C· Turkey	280	919	66	2017
Emaar Square	Istanbul	Turkey	280	920	62	2018
Naberezhnaya Tower C	Moscow	- Russia	268.4	881	59	2007
Triumph Palace ^[7]	Moscow	- Russia	264.1	867	57	2005
Commerzbank Tower(8(9)	Frankfurt	Germany	258.7	848	56	1997
CoC: Saint Petersburg Tower ^[10]	Moscow	Russia	256.9	843	65	2010
Mosseturm	Frankfurt	Germany	256.5	842	55	1990
Nurol Life(11)[12]	Istanbul	C Turkey	252	827	60	2017
Torre de Cristal	Madrid	Spain	249	817	45	2008
Torre Cepsa	Madrid	Spain	248.3	815	45	2008
Evolution Tower ^[13]	Moscow	- Russia	245.9	807	53	2014
OKO: North Tower ⁽¹⁴⁾	Moscow	- Russia	245	804	49	2014
Federation: West Tower	Moscow	Russia	243.2	798	62	2007
Main building of Moscow State University	Moscow	- Russia	240	787	36	1953
Imperia Tower	Moscow	- Russia	238.7	783	60	2011
Palace of Culture and Science	Warsaw	Poland	237	777	43	1955
Torre PwC	Madrid	Spain	236	774	52	2008
1 Canada Square	London	United Kingdom	235	771	50	1991
Istanbul Sapphire[15][16]	Istanbul	C- Turkey	234.9	770	54	2010
Tour First	Paris ^B	■ France	231	758	56	2011
Unicredit Tower	Milan	ltaly	231	758	35	2011
Heron Tower	London	Control Kingdom	230	755	46	2011



- seats on an aeroplane
- · account transactions
- · tall buildings

and to answer questions

 seats available on flight?

- seats on an aeroplane
- account transactions
- tall buildings

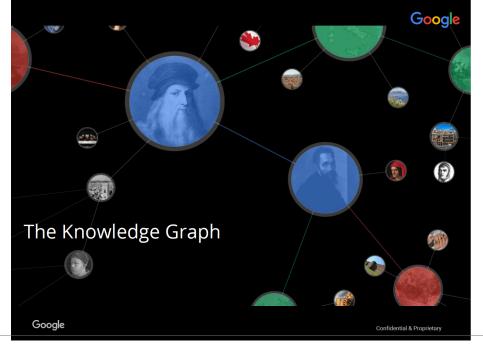
and to answer questions

- seats available on flight?
- · can afford to pay rent?

- · seats on an aeroplane
- · account transactions
- tall buildings

and to answer questions

- seats available on flight?
- · can afford to pay rent?
- tallest building in Europe?

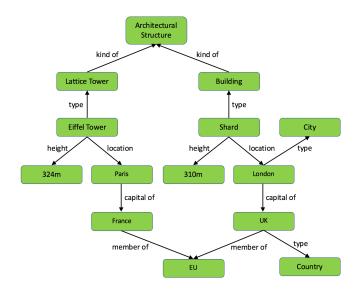


What kind of representation?

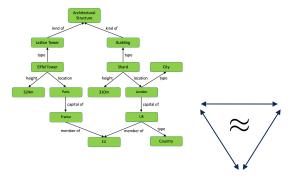
The Knowledge Graph

The Knowledge Graph is a comprehensive collection of real-world entities (people, places, things, and concepts) along with relationships and factual attributes that describe them.

Google

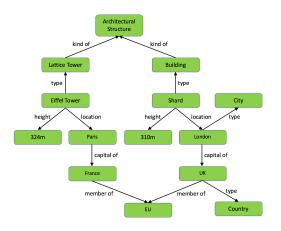


Lattice Tower Building Eiffel Tower Shard City 324m Paris 310m London UK France Country EU



Architectural Structure						
name	location	height	kind			
Shard	London	310m	Building			
Eiffel Tower	Paris	324m	Lattice Tower			

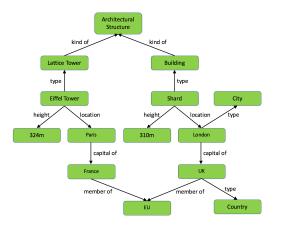
City	
name	capital of
London	UK
Paris	France


member of				
country	organisation			
France	EU			
UK	EU			

Building(Shard)
City(London)
location(Shard,London)
height(Shard,310m)
capitalOf(London,UK)

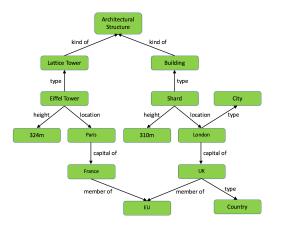
...

Computational

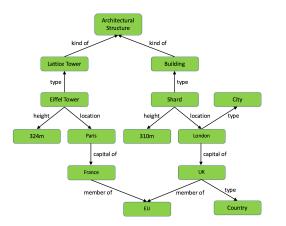

Reasoning is the process of answering queries w.r.t. the represented knowledge

What is the height of the Eiffel Tower?

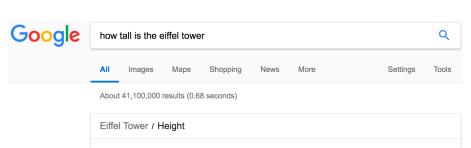
SELECT ?x WHERE { EiffelTower height ? x. }


Reasoning is the process of answering queries w.r.t. the represented knowledge

What is the height of the Eiffel Tower?



- Reasoning is the process of answering queries w.r.t. the represented knowledge
- What is the height of the Eiffel Tower?



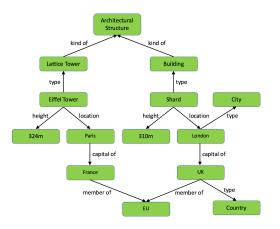
- Reasoning is the process of answering queries w.r.t. the represented knowledge
- What is the height of the Eiffel Tower?

• 324m

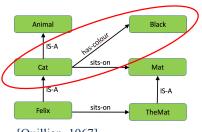
300 m, 324 m to tip

People also search for

Burj Khalifa 828 m


Statue of Liberty 93 m

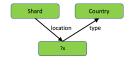
Leaning Tower of Pisa 58 m

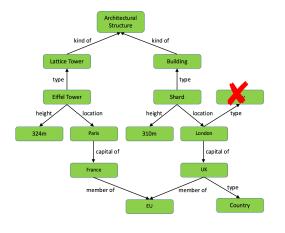


- What is the difference between a Building, a Lattice Tower and an Architectural Structure?
- Is the Eiffel Tower a Building; is it an Architectural Structure?
- Special meaning of, e.g., type and kind of edges?

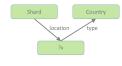
Semantics: the study of meaning

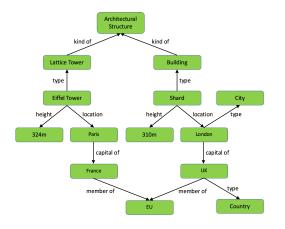
[Quillian, 1967]


(Precise) semantics needed in order to define what (correct) query answers should be

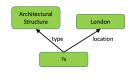


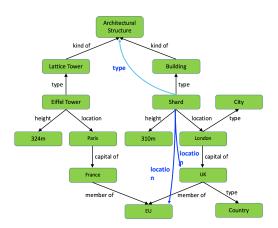
 What country is the Shard located in?



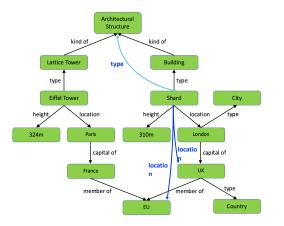

 What country is the Shard located in?

• ???





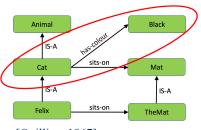
 What Architectural Structures are located in London?



- Every Building located in London is also located in
 - UK
 - EU
 - England
 - Northern Hemisphere
 - ..
- Need to add a very large number of edges

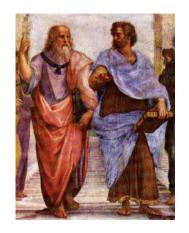
A city that is the capital of a country is a (geographical) part of that country[†]

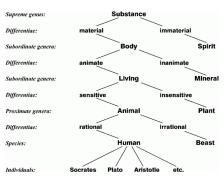
A thing that is located in a city that is a (geographical) part of a country is also located in that country


A thing that is located in a country that is a member of a supranational union is also located in that supranational union

† Part-whole relationships are complicated! They are the subject of a whole field of study in logic and philosophy: mereology

Semantics: the study of meaning

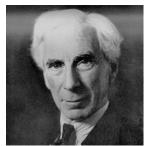



[Quillian, 1967]

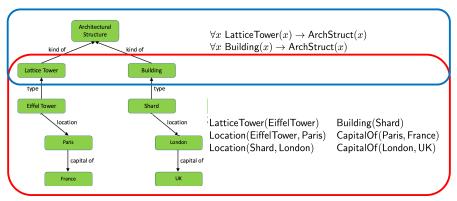
(Precise) semantics needed in order to define what (correct) query answers should be

"All men are mortal, all Greeks are men, therefore all Greeks are mortal" (syllogism)

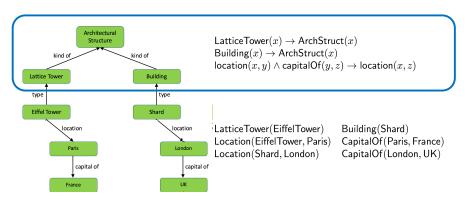
Modern KR languages are often based on logic


Typically (subsets of) First Order Predicate Calculus

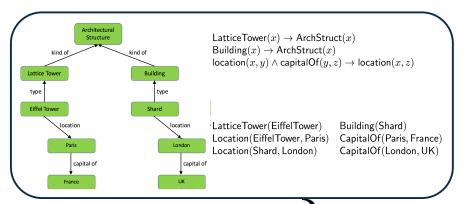
Gottlob Frege


Charles Sanders
Peirce

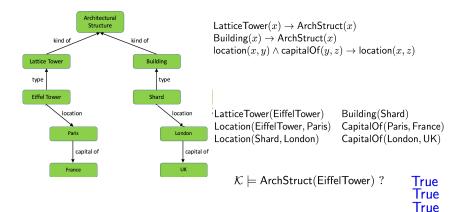
Bertrand Russell



facts / data / (RDF) graph ontology / conceptual schema



facts / data / (RDF) graph
ontology / conceptual schema



facts / data / (RDF) graph
ontology / conceptual schema

knowledge base

True False

Devise algorithms that compute query answers E.g., using natural deduction rules:

$$\begin{array}{c|c} \forall x P(x) \to R(x) & \forall x \mathsf{Greek}(x) \to \mathsf{Mortal}(x) \\ \hline \forall x Q(x) \to R(x) & \forall x P(x) \to Q(x) & \forall x \mathsf{Man}(x) \to \mathsf{Mortal}(x) & \forall x \mathsf{Greek}(x) \to \mathsf{Man}(x) \\ \hline Q(a) & \mathsf{ArchStruct}(\mathsf{EiffelTower}) \\ \hline \forall x P(x) \to Q(x) & P(a) & \forall x \mathsf{Building}(x) \to \mathsf{ArchStruct}(x) & \mathsf{Building}(\mathsf{EiffelTower}) \\ \hline \mathsf{Can} & \mathsf{Chack}(\mathsf{prove}) & \mathsf{algorithms} & \mathsf{arce} & \mathsf{sound} & \mathsf{and} \\ \hline \end{array}$$

Can check/prove algorithms are sound and complete w.r.t. semantics

Turing showed that some problems cannot be completely solved using standard computational model

- halting problem
- FOL entailment problem

Even if decidable, reasoning might be of inherently high complexity and so take an infeasibly long time

"Scruffy" approach:

Ad-hoc representation Efficient but (at least) incomplete algorithms

- ✓ Can use arbitrarily powerful representation
- √ Favourable scalability properties
- X Incomplete answers
 - Degree of incompleteness unknown
 - Incompleteness can easily become unsoundness

"Neat" approach:

Study KR languages to find appropriate balance of expressive power and computability

Design algorithms that work well in typical cases

Develop highly optimised implementations

- ✓ Precisely defined semantics
- √ Formal properties well understood
- ✓ Sound and complete reasoning
- Limited representation power
- Optimisations may not offer robust scalability

Family of logic-based KR languages Most are decidable subsets of FO logic Provide a range of different constructors

- Booleans (and, or, not)
- Restricted forms of quantification (exists, forall)
- Counting (atmost, atleast)
- ...

Decidability/complexity and (efficient) algorithms known for many combinations of constructors Highly optimised implementations for various "sweet spot" languages

Complexity of reasoning in Description Logics

Note: the information here is (always) incomplete and updated often

Base description logic: Attributive \angle anguage with \angle complements $ALC := \bot | A | \neg C | C \land D | C \lor D | \exists R.C | \forall R.C$

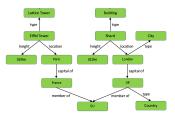
Concept constructo	ors:		Role constructors:	trans (reg					
$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	with the second	(≤n R.C) constructor)							
[54, p.3] © Empty TBox O Acyclic TBox (A≡C,	a extensions of ALCIO, s A is a concept name; no for arbitrary concepts C	cycles) and D) selected the Description Le							
		Complexity o	f reasoning problems ²						
Reasoning problem	Complexity		Comments and references						
Concept satisfiability	NExpTime-complete	 Hardness of even JACCY70 is proved in [75, Corollary 4.13]. In that paper, the result is formulated for JACCY70 is tonly number restrictions of the form (£18) are used in the proof. A different proof of the NExpTime-hardness for JACCY70 is given in [£3] (even with 1 nominal, and role inverses not used in number restrictions). Upper bound for JX70/Q is proved in [77, corollary 6.31] with numbers coded in unary (for binary coding, the upper bound remains an open problem for all logics in between JACCY70 and JX70/Q. Important in number restrictions, only simple roles (i.e. which are neither transitive nor have a transitive suchose) are allowed, otherwise we gain undecidability even in JX70 seg (£6), number restrictions – and still have a decidable logic! So the above notion of a simple role could be substantially extended. 							
ABox consistency	istency NExpTime-complete By reduction to concept satisfiability problem in presence of nominals shown in [69, Theorem 3.7].								

List of reasoners

Reasoner	Instution	Download	Publication	DistEL	Wright State University	Download	Core publication	HermiT	University of Oxford	Download	Core publication
BaseViSor	VIStology, Inc.	Download	Core publication	DRAOn	University of Paris 8,	Download	Core publication	jcel	Technische Universität Dreeden	Download	Core publication
BUNDLE	University of Ferrara	Download	Core publication	DReW	Vienna University of Technology	Download	Core	JFact	The University of Manchester	Download	Core
CEL	Technische Universität Dresden	Download	Core publication	ELepHant	Not given	Download	Core	Konclude	University of Ulm, derivo	Download	Core
Chainsaw	The University of	Download	Core				publication		GmbH		publication
	Manchester		publication	ELK	University of Ulm, Germany	Download	Core publication	LIFR	Centre for Research and Technology Helias	Download	Core publication
Clipper	Vienna University of Technology	Download	Core publication	ELOG	Not given	Download	Core		(CERTH)		
DBOWL	University of Malaga	Download	Core publication				publication	Mastro	Sapienza University of Rome	Download	Core publication
				FaCT++	The University of Manchester	Download	Core publication	MORe	University of Oxford	Download	Core publication
DeLorean	Not given	Download	Core publication	fuzzyDL	ISTI – CNR	Download	Core				
				,			publication	ontop	Free University of Bozen-Bolzano	Download	Core publication

Standardised KR language

- RDF provides a graphical data model
- OWL provides a DL-based ontology language


OWL

 $\mathsf{LatticeTower}(x) \to \mathsf{ArchStruct}(x) \\ \mathsf{Building}(x) \to \mathsf{ArchStruct}(x)$

ontology:

 $\mathsf{location}(x,y) \land \mathsf{capitalOf}(y,z) \to \mathsf{location}(x,z)$

RDF data:

Standardised KR language

- RDF provides a graphical data model
- OWL provides a DL-based ontology language

Developed as part of **W3C's Semantic Web** project

"A new form of Web content that is meaningful to computers will unleash a revolution of new possibilities" (!)

42

Standardised KR language

- · RDF provides a graphical data model
- OWL provides a DL-based ontology language

Developed as part of W3C's Semantic Web project

Now widely used in science, healthcare and Industry
Often referred to as "semantic technology"

43

Based on powerful but still decidable DL (SROIQ)

Three "profiles" based on tractable subsets

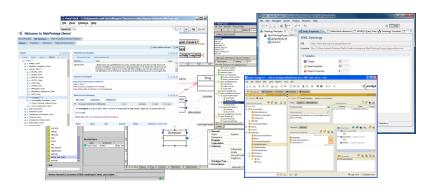
- QL: based on the DL-Lite description logic
- EL: based on the EL description logic
- RL: based on the DL fragment of Datalog (aka DLP)

Different algorithmic techniques

- (Hyper-) Tableau for full language
- Query rewriting for QL
- Consequence-based for EL
- Materialisation for RL

Highly optimised implementations

Several of which have been developed here at Oxford

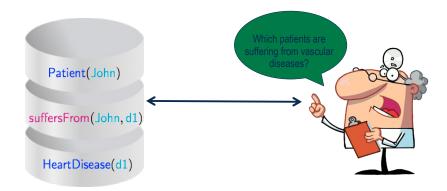


Tools:

Applications: Question Answering

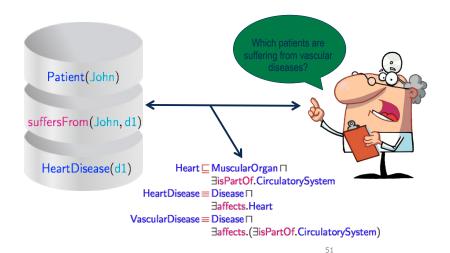
SNOMED is a **huge** medical ontology

More than 500,000 terms!


Why SNOMED? Let's ask Healthcare experts!

- "We need a clinical ontology that is universal, so any term I use is the same as every other colleague around the country"
- "SNOMED is the glue that binds the clinical community together and is the platform for all clinically relevant information"

Used to annotate patient records in more than 20 countries, including UK, USA, New Zealand, ...



The end?

Extensions

- Arithmetic functions and aggregation
- Reasoning about time
- Data streams

Algorithms

- · Consequence-based reasoning
- · Hybrid rewriting/materialisation

Optimisation and implementation

- · Incremental reasoning
- · Query planning
- HPC, including large-scale and distributed architectures

Tools and applications

Course Structure

Logics for KRR

- Propositional and First Order Logic
- Ontological modelling The role of reasoning

Horn logics and Datalog

- Expressivity and formal properties
- Reasoning

Description Logic

- Motivation and foundations
- Model theory
- Tableau reasoning
- Reasoning with data
- Lightweight description logics
- Ontology based data access

Course Structure

Description Logic -v- Datalog

- Expressiveness and decidability
- Combining DL and Datalog
 - Other decidable fragments of FOL

Ontology Languages and Semantic Technologies

- RDF & OWL
- SROIQ
- Non-DL features Profiles
- Tools and Reasoners

Nonmonotonic Reasoning Limitations of FOL

- Closed World Assumption and negation as failure
- Stable model semantics

Reading List

Primary Text

 An Introduction to Description Logic. Franz Baader, Ian Horrocks, Carsten Lutz, Uli Sattler

Supplementary Texts

- Handbook of Knowledge Representation. Frank van Harmelen, Vladimir Lifschitz and Bruce Porter (Eds). Foundations of Artificial Intelligence, 2008.
- Foundations of Semantic Web Technologies. Chapman & Hall/ CRC Textbooks in Computing. Pascal Hitzler, Markus Kroetsch, and Sebastian Rudolph, 2009.

