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Summary

Bisimilarity
1. is a process equivalence (≃ is reflexive, symmetric, and transitive),
2. is deadlock-sensitive (≃⊊≡𝖼𝗍𝗋),
3. preserves traces (≃⊊≡𝗍𝗋), and
4. preserves interaction, meaning it is a process congruence (e.g., for CCS).

The de Simone-format brings a first metatheoretical result about bisimilarity, admitting
congruences for free. Other formats exist, relaxing the coniditions of the presented format or
extending/adapting it towards other equivalence notions.

Today
• Checking bisimilarity for CCS is undecidable
• Restricting CCS 𝖢𝖢𝖲𝑓𝑖𝑛 and 𝖢𝖢𝖲++𝑓𝑖𝑛

1. admits finite axiomatizations
2. admits polynomial time procedures

Dr. Stephan Mennicke Concurrency Theory: Checking Bisimilarity in Polynomial Time May 12, 2025 1



Towards Undecidability

Minsky machines are computing devices working on so-called counters (aka. registers) that
hold natural numbers. Finitely many lines of code alter the states of the counters. Minsky
machines with at least two counters are Turing-complete. The following program adds the
values of 𝑐1 and 𝑐2.

01: dec c2 : 02 : 03
02: inc c1 : 01
03: HALT

Rule of Thumb
Equivalence of models of Turing-complete formalisms is not semi-decidable.
• of course, bisimilarity may be different from language equivalence
• but undecidability persists if only deterministic systems are involved
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Towards Undecidability

Definition 29  A Minsky machine is a pair ℳ = (ℙ, 𝑅) with ℙ a finite sequence
ℓ1ℓ2…ℓ𝑚 of program lines and a finite set 𝑅 of counters (i.e., 𝑅 = {𝑐1, 𝑐2, …, 𝑐𝑛}) such
that ℓ𝑚 : 𝖧𝖠𝖫𝖳 and each line ℓ𝑖 (1 ≤ 𝑖 < 𝑚) has one of the following shapes

𝑖 : 𝗂𝗇𝖼 𝑐 : 𝑗 𝑖 : 𝖽𝖾𝖼 𝑐 : 𝑗 : 𝑘

for counter 𝑐 ∈ 𝑅 and 1 ≤ 𝑗, 𝑘 ≤ 𝑚.

A configuration of ℳ is a pair 𝛾 = (𝑖, 𝛽) where 1 ≤ 𝑖 ≤ 𝑚 and 𝛽 : 𝑅 → ℕ. For 𝛾1 =
(𝑖, 𝛽1) and 𝛾2 = (𝑗, 𝛽2), define 𝛾1 ▹ 𝛾2 by cases:
𝑖 : 𝗂𝗇𝖼 𝑐 : 𝑗 𝛽2 = 𝛽1[𝑐 ↦ 𝛽1(𝑐) + 1]
𝑖 : 𝖽𝖾𝖼 𝑐 : 𝑘1 : 𝑘2 if 𝛽1(𝑐) > 0, 𝑗 = 𝑘1 and 𝛽2 = 𝛽1[𝛽1(𝑐) − 1]; otherwise, if 𝛽1(𝑐) =

0, 𝛽2 = 𝛽1 and 𝑗 = 𝑘2.

Theorem 30  The halting problem for 2-counter Minsky machines is undecidable.
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Exercise: Counting with CCS

Naive Approach
Consider a counter 𝑐 represented by process constants {𝐶𝑛 | 𝑛 ∈ ℕ} ⊆ 𝒦. Represent
operation of incrementing 𝑐 by synchronizing on name 𝑖. Conversely, decrementing 𝑐 by
name 𝑑. Synchronization on name 𝑧 may be used to check the counter value for zero. Define
in 𝒯𝒦 ⊆ 𝒦 × 𝖠𝖼𝗍 × 𝖯𝗋

𝐶0 ⟶
𝑖

𝐶1

𝐶0 ⟶
𝑧

𝐶0

𝐶𝑛 ⟶
𝑖

𝐶𝑛+1(𝑛 > 0)

𝐶𝑛 ⟶
𝑑

𝐶𝑛−1(𝑛 > 0)

Here 𝐶𝑛 represents the counter value 𝑛 of 𝑐. Consequently, only 𝐶0 may emit on name 𝑧.
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Exercise: Counting with CCS

Names and process constants are specific to counters. Hence, if several counters (𝑐𝑗)𝑗∈𝐽
 are

in use, separate action names like 𝑖𝑗, 𝑑𝑗, 𝑧𝑗 and process constants 𝐶𝑗
0 , 𝐶𝑗

1 , 𝐶𝑗
2 , … for counter

𝑐𝑗 must be reserved. There is no apparent reason why 𝐶0 emits on name 𝑧 (i.e., 𝐶0 ⟶
𝑧

𝐶0).

A Finite Approach
In contrast to the previous approach, we may also use a single constant to perform
incrementation and respective decrementation by

𝐶 ⟶
𝑖

𝐶 | 𝑑.𝟎

Excluding transition 𝐶0 ⟶
𝑧

𝐶0 from the naive approach, 𝐶0 ≃ 𝐶 .
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Exercise: Let us try to show 𝐶0 ≃ 𝐶

In order to see that the counter implementation actually works, we have to show that the
finite counter representation actually works as expected. Recall,

𝐶0 ⟶
𝑖

𝐶1

𝐶𝑛 ⟶
𝑖

𝐶𝑛+1

𝐶𝑛 ⟶
𝑑

𝐶𝑛−1

𝐶 ⟶
𝑖

𝐶 | 𝑑.𝟎

How to prove 𝐶0 ≃ 𝐶?

ℛ = {(𝐶𝑛, 𝐶 | Π𝑛
𝑖=0𝑑.𝟎) | 𝑛 ∈ ℕ}

Is ℛ a bisimulation? no

ℛ is a bisimulation up-to ≃.
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Exercise: Bisimulations up-to ≃

Definition 31  A process relation ℛ is a bisimulation up-to ≃ if, whenever 𝑝 ℛ 𝑞, for all
𝜇 ∈ 𝖠𝖼𝗍, we have
1. 𝑝 ⟶

𝜇
𝑝′ implies a 𝑞′ such that 𝑞 ⟶

𝜇
𝑞′ and 𝑝′ ≃ ℛ ≃ 𝑞′;

2. 𝑞 ⟶
𝜇

𝑞′ implies a 𝑝′ such that 𝑝 ⟶
𝜇

𝑝′ and 𝑝′ ≃ ℛ ≃ 𝑞′.

𝑝′ ≃ ℛ ≃ 𝑞′ iff there are 𝑝″, 𝑞″ such that 𝑝′ ≃ 𝑝″, 𝑝″ ℛ 𝑞″, and 𝑞″ ≃ 𝑞′.

Lemma 32  If ℛ is a bisimulation up-to ≃, then ≃ ℛ ≃ is a bisimulation.
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A Finite Approach with Zero Testing

With 𝐶 ⟶
𝑖

𝐶 | 𝑑.𝟎 in place, there must not be any transition 𝐶 ⟶
𝑧

 since 𝐶 is a component
of every parallel composition succeeding 𝐶 . Thus, we need to separate a constant that has 𝑧
enabled while other processes must not be capable of emitting on 𝑧.

For the final encoding, we consider three constants 𝐶0, 𝐶1, 𝐶2 for a single counter 𝑐. 𝐶0
reflects the state of 𝑐 where its value is 0. After incrementing, the counter holds an odd
value, represented by process constant 𝐶1. After incrementing an odd value (i.e., 𝐶1), we
reach an even value, represented by process constant 𝐶2. Likewise, incrementing an even
value (i.e., 𝐶1), we reach another odd value (𝐶1).
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A Finite Approach with Zero Testing

Thus, for certain contexts 𝒞, 𝒟, we get

𝐶0 ⟶
𝑧

𝐶0

𝐶0 ⟶
𝑖

𝒞[𝐶1]

𝐶1 ⟶
𝑖

𝒟[𝐶2]

𝐶2 ⟶
𝑖

𝒞[𝐶1]

Contexts 𝒞, 𝒟 are specified next:
• because 𝐶1 represents arbitrary odd values of 𝑐, we must not specify 𝐶1 ⟶

𝑑
𝐶0 directly;

• instead, we make use of alternating restrictions on names ℓ1, ℓ2 hiding certain action
names (like 𝑧) as long as the counter has not been decremented to a respective value (e.g.,
0);
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A Finite Approach with Zero Testing

𝐶0 ⟶
𝑖

𝝂ℓ1 (𝐶1 | ℓ1.𝐶0)

𝐶1 ⟶
𝑖

𝝂ℓ2 (𝐶2 | ℓ2.𝐶1)

𝐶2 ⟶
𝑖

𝝂ℓ1 (𝐶1 | ℓ1.𝐶2)

The lhs in every process context takes care of the next counter value, being either odd (𝐶1) or
even (𝐶2). The rhs waits for the decrement operation to have taken place to unguard the
counter’s original value. Consequently,

𝐶1 ⟶
𝑑

ℓ1.𝟎

𝐶2 ⟶
𝑑

ℓ2.𝟎
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Exercise: Implementing Minsky Programs with CCS

Minsky machines are computing devices working on so-called counters (aka. registers) that
hold natural numbers. Finitely many lines of code alter the states of the counters. Minsky
machines with at least two counters are Turing-complete. The following program adds the
values of 𝑐1 and 𝑐2.

01: dec c2 : 02 : 03
02: inc c1 : 01
03: HALT

In CCS, we represent this program by

𝝂(𝑖1,𝑖2,𝑑1,𝑑2,𝑧1,𝑧2) (𝐶1 | 𝐶2 | 𝐿1)

with

𝐿1 ⟶
𝑑2

𝐿2 𝐿1 ⟶
𝑧2

𝐿𝐻 𝐿2 ⟶
𝑖1

𝐿1 𝐿𝐻 ⟶
✓

𝐿𝐻

where ✓ ∈ 𝑁𝑎𝑚𝑒𝑠.
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Exercise: Implementing Minsky Programs with CCS

Theorem 33 CCS is Turing-complete. For every Minsky machine ℳ there is a process
𝑃(ℳ) with a special constant 𝐿𝐻  representing the halting line of ℳ such that ℳ
terminates if and only if 𝑃(ℳ) ⟶

𝜏 ⋆
⟶
✓

.

Everything interesting about CCS is undecidable.
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The Bisimilarity Problem

Input Processes 𝑝, 𝑞 ∈ 𝖯𝗋.
Output Yes if and only if 𝑝 ≃ 𝑞.

What if 𝑝 and 𝑞 came from very particular sets of processes?

What if 𝑝 and 𝑞 came from CCS, but not all of CCS?
𝑝, 𝑞 ∈ 𝖢𝖢𝖲𝑓𝑖𝑛

𝖢𝖢𝖲𝑓𝑖𝑛 = 𝖢𝖢𝖲(𝖠𝖼𝗍, ∅, ∅)
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Recall: Bisimilarity in P for Finite LTSs

≃𝜔≔ ⋂𝑖≥0 ≃𝑖
1. set ≃0= 𝒰
2. 𝑝 ≃𝑛+1 𝑞 for 𝑛 ≥ 0 if for all 𝑎 ∈ 𝖠𝖼𝗍:

a. for all 𝑝′ with 𝑝 ⟶
𝑎

𝑝′, there is a 𝑞′ with 𝑞 ⟶
𝑎

𝑞′ and 𝑝′ ≃𝑛 𝑞′;
b. for all 𝑞′ with 𝑞 ⟶

𝑎
𝑞′, there is a 𝑝′ with 𝑝 ⟶

𝑎
𝑝′ and 𝑝′ ≃𝑛 𝑞′.

Theorem 21  ≃ and ≃𝜔 coincide on image-finite LTSs.

1. Finite LTSs are image-finite. recall
2. How hard is it to compute ≃ on finite LTSs (𝖯𝗋, 𝖠𝖼𝗍, ⟶)? i.e., ≃𝜔

• compute ≃0= 𝒰 𝒪(|𝖯𝗋|2)
• iteratively remove all pairs from ≃𝑖 contradicting bisimulations ⇝≃𝑖+1 𝒪(|𝖯𝗋|3)
• stop when nothing changes after at most |𝖯𝗋|2 removals
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Recall: Bisimilarity in P for Finite LTSs

Lemma 34  For all processes 𝑃 ∈ 𝖢𝖢𝖲𝑓𝑖𝑛, 𝐺(𝑃) is finite and finitely branching.

Proof:  By induction on the structure of 𝑃 .
Base 𝑃 = 𝟎 has a single node (i.e., process) and no transitions.
Step Let 𝑄1, 𝑄2 ∈ 𝖢𝖢𝖲𝑓𝑖𝑛 with finite(ly branching) 𝐺(𝑄𝑖) (𝑖 = 1, 2).

𝑃 = 𝜇.𝑄1 easy
𝑃 =𝝂𝑎𝑄1 easy
𝑃 = 𝑄1 +𝑄2 easy
𝑃 = 𝑄1 | 𝑄2 recall, every process can be turned into head normal form; for 𝖢𝖢𝖲𝑓𝑖𝑛

processes, repeated application eventually terminates with a process 𝑄 without
any parallel composition operator.

∎
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Recall: Bisimilarity in P for Finite LTSs

Theorem 35  ≃ is in P for 𝖢𝖢𝖲𝑓𝑖𝑛 processes.
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Axiomatizing ≃ for 𝖢𝖢𝖲𝑓𝑖𝑛

Decidability implies an algebraic characterization of bisimilarity in the shape of
axiomatizations.

Axiomatizations are axioms that, incorporating equational reasoning, are sufficient to decide
the equivalence.
1. use reflexivity, symmetry, and transitivity
2. use substitutivity by equivalent subterms
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The System 𝒮ℬ
𝐒𝟏 𝑃 + 𝟎 = 𝑃
𝐒𝟐 𝑃 + 𝑄 = 𝑄 + 𝑃
𝐒𝟑 𝑃 + (𝑄 + 𝑅) = (𝑃 + 𝑄) + 𝑅
𝐒𝟒 𝑃 + 𝑃 = 𝑃
𝐑𝟏 𝝂𝑎 𝟎 = 𝟎
𝐑𝟐 if 𝜇 ∈ {𝑎, 𝑎} 𝝂𝑎 𝜇.𝑃 = 𝟎
𝐑𝟑 if 𝜇 ∉ {𝑎, 𝑎} 𝝂𝑎 𝜇.𝑃 = 𝜇.𝝂𝑎 𝑃
𝐑𝟒 𝝂𝑎 (𝑃𝑄) =𝝂𝑎 𝑃 +𝝂𝑎 𝑄

𝐄

If 𝑃 ≝ ∑0≤𝑖≤𝑚 𝜇𝑖.𝑃𝑖 and 𝑃 ≝ ∑0≤𝑗≤𝑛 𝜇𝑗.𝑃𝑗, infer

𝑃 | 𝑃 ′ = ∑
0≤𝑖≤𝑚

𝜇𝑖.(𝑃𝑖 | 𝑃 ′) + ∑
0≤𝑗≤𝑛

𝜇𝑗.(𝑃 | 𝑃𝑗) + ∑
𝜇𝑖=𝜇𝑗

𝜏.(𝑃𝑖 | 𝑃𝑗)

.
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A Note on Locality

• ≃ does not change if we switch from single symbols to sequences

• ≃𝜔, however, does

• 𝑃 ≅0 𝑄 for all processes 𝑃  and 𝑄

• 𝑃 ≅𝑖+1 𝑄 if, for all 𝑤 ∈ 𝖠𝖼𝗍⋆,
1. 𝑃 ⟶

𝑤
𝑃 ′ implies 𝑄 ⟶

𝑤
𝑄′ and 𝑃 ′ ≅𝑖 𝑄′;

2. 𝑄 ⟶
𝑤

𝑄′ implies 𝑃 ⟶
𝑤

𝑃 ′ and 𝑃 ′ ≅𝑖 𝑄′;

• the limit is ≅𝜔≔ ⋂𝑖≥0 ≅𝑖 and coincides with ≃ for image-finite processes
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Outlook

1. How efficient can we compute bisimilarity? May 19 Lecture
• Bisimilarity for finite processes is P-complete
• Surprisingly, ≅𝑖 for 𝑖 ≥ 1 is Pspace-complete

2. What makes bisimilarity undecidable for CCS? May 26 Lecture
• Decidability for BPP and CFP as well
• Undecidability for Petri nets
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