TECHNISCHE
@ UNIVERSITAT
DRESDEN

Concurrency Theory

Lecture 6: Checking Bisimilarity in Polynomial Time

Dr. Stephan Mennicke

Institute for Theoretical Computer Science
Knowledge-Based Systems Group

May 12, 2025

International Center
"% for Computational Logic

https://iccl.inf.tu-dresden.de/web/Concurrency_Theory

Summary

Bisimilarity
1. is a process equivalence (=~ is reflexive, symmetric, and transitive),
2. is deadlock-sensitive (~C=,),
3. preserves traces (~C=,,), and
4. preserves interaction, meaning it is a process congruence (e.g., for CCS).

The de Simone-format brings a first metatheoretical result about bisimilarity, admitting
congruences for free. Other formats exist, relaxing the coniditions of the presented format or
extending/adapting it towards other equivalence notions.

Today

« Checking bisimilarity for CCS is undecidable

« Restricting CCS CCSy;,, and CCS};-;';
1. admits finite axiomatizations
2. admits polynomial time procedures

Concurrency Theory: Checking Bisimilarity in Polynomial Time May 12, 2025

Towards Undecidability

Minsky machines are computing devices working on so-called counters (aka. registers) that

hold natural numbers. Finitely many lines of code alter the states of the counters. Minsky

machines with at least two counters are Turing-complete. The following program adds the
values of ¢; and c,.

O1l: dec c2 : 02 : 03
02: inc cl1 : 01
03: HALT

Rule of Thumb

Equivalence of models of Turing-complete formalisms is not semi-decidable.
« of course, bisimilarity may be different from language equivalence
« but undecidability persists if only deterministic systems are involved

Concurrency Theory: Checking Bisimilarity in Polynomial Time May 12, 2025

Towards Undecidability

Definition 29 A Minsky machine is a pair M = (PP, R) with P a finite sequence
0. 4y...0 of program lines and a finite set R of counters (i.e., R = {c;, ¢y, ..., ¢, }) such
that ., : HALT and each line Z, (1 < 7 < m) has one of the following shapes

i:incc:j t:decc:j:k
for counterc € Rand 1 < 5,k < m.

A configuration of M is a pair v = (i, 5) where 1 <i <mand §: R — N. For vy, =

(i, 81) and v, = (j, B5), define y; > 75 by cases:

i:incc:j By = Bilc By(c) + 1]

t:decc:ky:ky if By(c) >0,j5=k;and B, = B,[B;(c) — 1]; otherwise, if B, (c) =
0, By = py and j = k;.

Theorem 30 The halting problem for 2-counter Minsky machines is undecidable.

Concurrency Theory: Checking Bisimilarity in Polynomial Time May 12, 2025

Exercise: Counting with CCS

Naive Approach

Consider a counter ¢ represented by process constants {C,, |n € N} C X . Represent
operation of incrementing ¢ by synchronizing on name i. Conversely, decrementing c by
name d. Synchronization on name z may be used to check the counter value for zero. Define

in T4 C K x Act x Pr
c, -5 o
c, = O,
C, 50 . (n>0)
c e (n>0)

Here C, represents the counter value n of c. Consequently, only C, may emit on name z.

Dr. Stephan Mennicke Concurrency Theory: Checking Bisimilarity in Polynomial Time May 12, 2025

Exercise: Counting with CCS

Names and process constants are specific to counters. Hence, if several counters (cj) . are
. . Je
in use, separate action names like i, d;, z; and process constants C’g ,C,Cy, ... for counter

c; must be reserved. There is no apparent reason why (;, emits on name z (i.e., (j N Co)-

A Finite Approach

In contrast to the previous approach, we may also use a single constant to perform
incrementation and respective decrementation by

c -5 C)do

z
Excluding transition C; — (, from the naive approach, C; ~ C.

Dr. Stephan Mennicke Concurrency Theory: Checking Bisimilarity in Polynomial Time May 12, 2025

Exercise: Let us try to show C, ~ C

In order to see that the counter implementation actually works, we have to show that the
finite counter representation actually works as expected. Recall,

c, -5
c - C, ., c-5Cldo

d
cC —C

n n—1
How to prove Cy ~ C?
® = {(C,,C |T2yd.0) |n € N}
Is R a bisimulation? no

2R is a bisimulation up-to ~~.

Concurrency Theory: Checking Bisimilarity in Polynomial Time May 12, 2025

Exercise: Bisimulations up-to =~

Definition 31 A process relation R is a bisimulation up-to ~ if, whenever p X q, for all
u € Act, we have

7 "
1. p — p’ implies a ¢’ such that ¢ 7 q¢"and p’ ~ R ~ ¢';
2. ¢ — ¢’ implies a p” such that p — p" and p’ ~ R ~ ¢’.

p’ ~ R ~ ¢ iff there are p”, ¢” such that p” ~ p”, p” X q”,and ¢” ~ ¢’.

Lemma 32 If X is a bisimulation up-to =~~, then ~ X =~ is a bisimulation.

Concurrency Theory: Checking Bisimilarity in Polynomial Time

May 12, 2025

A Finite Approach with Zero Testing

i z
With C' — C'| d.0 in place, there must not be any transition C — since C' is a component
of every parallel composition succeeding C. Thus, we need to separate a constant that has z
enabled while other processes must not be capable of emitting on z.

For the final encoding, we consider three constants Cy, C;, C, for a single counter c. (j
reflects the state of ¢ where its value is 0. After incrementing, the counter holds an odd
value, represented by process constant (. After incrementing an odd value (i.e., C}), we
reach an even value, represented by process constant C,. Likewise, incrementing an even
value (i.e., C;), we reach another odd value (C).

Concurrency Theory: Checking Bisimilarity in Polynomial Time May 12, 2025

A Finite Approach with Zero Testing

Thus, for certain contexts €, D, we get
Co — G,
Co — €[CY]
G, — DGy
G, = €[Gi]

Contexts C, D are specified next: ;
* because (] represents arbitrary odd values of ¢, we must not specity C; — C, directly;
- instead, we make use of alternating restrictions on names ¢, ¢, hiding certain action
names (like Z) as long as the counter has not been decremented to a respective value (e.g.,

0);

Concurrency Theory: Checking Bisimilarity in Polynomial Time May 12, 2025

A Finite Approach with Zero Testing

C, —Svt, (C, | £,.C,)
C, swt, (Cy | £,.C,)

C, —Sswe, (C, | 4,.C)

The [hs in every process context takes care of the next counter value, being either odd (C}) or
even (C5). The rhs waits for the decrement operation to have taken place to unguard the
counter’s original value. Consequently,

=]

c, 57,0
c, -5 1,

5
=

Concurrency Theory: Checking Bisimilarity in Polynomial Time May 12, 2025

Exercise: Implementing Minsky Programs with CCS

Minsky machines are computing devices working on so-called counters (aka. registers) that
hold natural numbers. Finitely many lines of code alter the states of the counters. Minsky
machines with at least two counters are Turing-complete. The following program adds the
values of ¢; and c,.

O1l: dec c2 : 02 : 03
02: inc cl1 : 01
03: HALT

In CCS, we represent this program by
V(i17i27d17d27z17z2) (Cl | 02 | Ll)

with

where v € Names.

Concurrency Theory: Checking Bisimilarity in Polynomial Time May 12, 2025

Exercise: Implementing Minsky Programs with CCS

Theorem 33 CCS is Turing-complete. For every Minsky machine M there is a process
P(M) with a special constant L ;; representing the halting line of M such that M

T v
terminates if and only if P(M) RN

Everything interesting about CCS is undecidable.

Concurrency Theory: Checking Bisimilarity in Polynomial Time May 12, 2025

The Bisimilarity Problem

Input Processes p, q € Pr.
Output Yes if and only if p ~ gq.

What if p and ¢ came from very particular sets of processes?

What if p and ¢ came from CCS, but not all of CCS?
p,q € CCSy,

CCS};, = CCS(Act, 0, 0)

Concurrency Theory: Checking Bisimilarity in Polynomial Time May 12, 2025

Recall: Bisimilarity in P for Finite LTSs

1. set 20: u
2. p =~ +1qforn>01fforalla€Act
a. for all p’ Wlthp—>p there is a ¢’ W1thq—> q and p’ ~_ ¢’;

b. for all ¢’ Wlthq—>q there is a p’ Wlthp—>p and p’ ~_ ¢’

Theorem 21 =~ and =~ coincide on image-finite LTSs.

1. Finite LTSs are image-finite. recall
2. How hard is it to compute =~ on finite LTSs (Pr, Act, —)? ie., >~
« compute ~y= U O(|Pr|?)
- iteratively remove all pairs from ~~, contradicting bisimulations >, , O(|Pr|?)

« stop when nothing changes after at most |Pr|? removals

May 12, 2025

Concurrency Theory: Checking Bisimilarity in Polynomial Time

Recall: Bisimilarity in P for Finite LTSs

Lemma 34 For all processes P € CCSy;,, G(P) is finite and finitely branching.

Proof: By induction on the structure of P.
Base P = 0 has a single node (i.e., process) and no transitions.
Step Let Q,Q, € CCSy, with finite(ly branching) G(Q;) (i = 1,2).
P = p.Q, easy
P =va (@, easy
P =Q;+Qy easy
P =@, | Q. recall, every process can be turned into head normal form; for CCS;,
processes, repeated application eventually terminates with a process () without
any parallel composition operator.

Concurrency Theory: Checking Bisimilarity in Polynomial Time May 12, 2025

Recall: Bisimilarity in P for Finite LTSs

Theorem 35 =~ isin P for CCSy;, processes.

Dr. Stephan Mennicke Concurrency Theory: Checking Bisimilarity in Polynomial Time May 12, 2025

Axiomatizing ~ for CCS,,

Decidability implies an algebraic characterization of bisimilarity in the shape of
axiomatizations.

Axiomatizations are axioms that, incorporating equational reasoning, are sufficient to decide
the equivalence.

1. use reflexivity, symmetry, and transitivity

2. use substitutivity by equivalent subterms

Dr. Stephan Mennicke Concurrency Theory: Checking Bisimilarity in Polynomial Time May 12, 2025

The System 538

S1 P+0=P
S2 P+Q=Q+P
S3 P+(Q+R)=(P+Q)+R
S4 P+P=P
R1 va0=0
R2 if y € {a,a} vau.P=0
R3 if u ¢ {a,a} vau.P=pvaP
R4 va (PQ) =va P +va(@
E
IfP= D o<icm Mi- by and P = = Zo<g<n p;. P, infer

PP =Y p.(P|P)+ Y p.(PIP)+ Z

0<i<m 0<j5<n

Concurrency Theory: Checking Bisimilarity in Polynomial Time May 12, 2025

A Note on Locality

~ does not change if we switch from single symbols to sequences

~ ., however, does

P =~ (@ for all processes P and ()

P, Qif forall w € Act”,
1. P P implies) i Q)" and P’ =
2. Q — Q' implies P —5 P’ and P’

|12

Q"
,i/

(’/o
,i/

the limit is & := ﬂizo >~. and coincides with =~ for image-finite processes

Dr. Stephan Mennicke Concurrency Theory: Checking Bisimilarity in Polynomial Time May 12, 2025

Outlook

1. How efficient can we compute bisimilarity? May 19 Lecture
« Bisimilarity for finite processes is P-complete
« Surprisingly, =, for ¢ > 1 is PspACE-complete

2. What makes bisimilarity undecidable for CCS? May 26 Lecture

« Decidability for BPP and CFP as well
« Undecidability for Petri nets

Concurrency Theory: Checking Bisimilarity in Polynomial Time May 12, 2025

