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Review: Query Complexity

Query answering as decision problem
~» consider Boolean queries

Various notions of complexity:
® Combined complexity (complexity w.r.t. size of query and database instance)
® Data complexity (worst case complexity for any fixed query)
® Query complexity (worst case complexity for any fixed database instance)

Various common complexity classes:

L € NL € P € NP ¢ PSpace C ExpTime
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Review: FO Combined Complexity

Theorem 4.1 The evaluation of FO queries is PSpace-complete with respect to
combined complexity.

We have actually shown something stronger:

Theorem 4.2 The evaluation of FO queries is PSpace-complete with respect to
query complexity.

This also holds true when restricting to domain-independent queries.
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Data Complexity of FO Query Answering

The algorithm showed that FO query evaluation is in L
~» can we do any better?
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Data Complexity of FO Query Answering

The algorithm showed that FO query evaluation is in L
~» can we do any better?

What could be better than L?

7CLCNLCPC...
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Data Complexity of FO Query Answering

The algorithm showed that FO query evaluation is in L
~» can we do any better?

What could be better than L?
72cLCNLCPC...

~ we need to define circuit complexities first
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Boolean Circuits

Definition 5.1: A Boolean circuit is a finite, directed, acyclic graph where
® cach node that has no predecessors is an input node

® each node that is not an input node is one of the following types of logical
gate: AND, OR, NOT

® one or more nodes are designated output nodes

~> we will only consider Boolean circuits with exactly one output

~» propositional logic formulae are Boolean circuits with one output and gates of fanout < 1
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Example

A Boolean circuit over an input string x1x, . .. x,, of length n
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Example

A Boolean circuit over an input string x1x, . .. x,, of length n

(n? gates)

Corresponds to formula (x; Ax2) V (x; Ax3) V...V (Xp—1 AXy)
~» accepts all strings with at least two 1s
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Circuits as a Model for Parallel Computation

Previous example:

~> n* processors working in parallel
~»> computation finishes in 2 steps

® size: number of gates = total number of computing steps
® depth: longest path of gates = time for parallel computation

~> circuits as a refinement of polynomial time that takes parallelizability into account
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Solving Problems With Circuits

Observation: the input size is “hard-wired” in circuits
~» each circuit only has a finite number of different inputs
~> not a computationally interesting problem

How can we solve interesting problems with Boolean circuits?
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Solving Problems With Circuits

Observation: the input size is “hard-wired” in circuits
~» each circuit only has a finite number of different inputs
~> not a computationally interesting problem

How can we solve interesting problems with Boolean circuits?

Definition 5.2: A uniform family of Boolean circuits is a set of circuits C, (n > 0)
that can easily? be computed from n.

A language £ C {0, 1}* is decided by a uniform family (C,),>0 of Boolean circuits if
for each word w of length |w]:

we L ifandonlyif Cpy(w) =1

2We don’t discuss the details here; see course Complexity Theory.
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Measuring Complexity with Boolean Circuits

How to measure the computing power of Boolean circuits?

Relevant metrics:

® size of the circuit: overall number of gates
(as function of input size)

® depth of the circuit: longest path of gates
(as function of input size)

e fan in: two inputs per gate or any number of inputs per gate?
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Measuring Complexity with Boolean Circuits

How to measure the computing power of Boolean circuits?

Relevant metrics:

® size of the circuit: overall number of gates
(as function of input size)

® depth of the circuit: longest path of gates
(as function of input size)

e fan in: two inputs per gate or any number of inputs per gate?

Important classes of circuits: small-depth circuits

Definition 5.3: (C,),s0 is a family of small-depth circuits if
® the size of C, is polynomial in n,
e the depth of C, is poly-logarithmic in n, that is, O(log" n).
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The Complexity Classes NC and AC

Two important types of small-depth circuits:

Definition 5.4: NC’ is the class of problems that can be solved by uniform fami-
lies of circuits (C,)us0 Of fan-in < 2, size polynomial in n, and depth in O(log* n).

The class NC is defined as NC = ;-0 NCF.
(“Nick's Class” named after Nicholas Pippenger by Stephen Cook)

Definition 5.5: AC* and AC are defined like NC* and NC, respectively, but for cir-
cuits with arbitrary fan-in.
(A is for “Alternating”: AND-OR gates alternate in such circuits)
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family of polynomial size,
constant depth,

arbitrary fan-in circuits
~ in AC®
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family of polynomial size,
constant depth,

arbitrary fan-in circuits
~ in AC®

We can eliminate arbitrary fan-ins by using more layers of gates:

A

(n? /4 gates)

(V) /2 gtes family of polynomial size,
logarithmic depth,
o ) bounded fan-in circuits
~ in NC!

X1 X2 X3 X4 Xs .. Xn
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Relationships of Circuit Complexity Classes

The previous sketch can be generalised:
NC® c AC’ cNC' cAC' c...c AC*cNC**' c...

Only few inclusions are known to be proper: NC° c AC® c NC!
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Relationships of Circuit Complexity Classes

The previous sketch can be generalised:
NC® c AC’ cNC' cAC' c...c AC*cNC**' c...

Only few inclusions are known to be proper: NC° c AC® c NC!

Direct consequence of above hierarchy: NC = AC
Interesting relations to other classes:

NC’ c AC’ c NC' cLcCNLCAC'c...cNCcP

Intuition:
® Problems in NC are parallelisable (known from definition)
® Problems in P\ NC are inherently sequential (educated guess)

However: it is not known if NC # P
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Back to Databases ...

Theorem 5.6: The evaluation of FO queries is complete for (logtime uniform) AC’
with respect to data complexity.

Proof:

® Membership: For a fixed Boolean FO query, provide a uniform construction for a
small-depth circuit based on the size of a database

® Hardness: Show that circuits can be transformed into Boolean FO queries in
logarithmic time (not on a standard TM ... not in this lecture)
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From Query to Circuit

Assumptions:
® query and database schema is fixed
e database instance (and thus active domain) are variable

Construct circuit uniformly based on size of active domain
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From Query to Circuit

Assumptions:
® query and database schema is fixed
e database instance (and thus active domain) are variable

Construct circuit uniformly based on size of active domain

Sketch of construction:

® one input node for each possible database tuple (over given schema and active domain)
~> true or false depending on whether tuple is present or not

® Recursively, for each subformula, introduce a gate for each possible tuple (instantiation) of
this formula
~» true or false depending on whether the subformula holds for this tuple or not

® | ogical operators correspond to gate types: basic operators obvious, YV as generalised
conjunction, 1 as generalised disjunction

® subformula with n free variables ~ |adom|" gates
~» especially: |]adom|® = 1 output gate for Boolean query
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Example

We consider the formula
Az.(Ax.Fy.R(x,y) A S(v,2)) A =R(a, 7)
Over the database instance:
R: S:
a | a b|b
a | b b | c

Active domain: {a, b, c}
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Example: dz.(Ax.dy.R(x,y) A S(v,2)) A =R(a, 2)

R(a,a) R(a, b) Ra,c) . S(a, a) . S(b, a) S(b,b) S(b, )

1 1 0 0 0 1 1
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Example: dz.(Ax.dy.R(x,y) A S(v,2)) A =R(a, 2)

(R(x,y) A (R(x,y) A (R(x,y) A (R(x,y) A
S(,2)) S(y,2)) S(v,2)) S0, 2)
la,a,a] [a,b,a] [a,b,b] la,b,c] -

R(a,a) R(a, b) Ra,c) . S(a, a) . S(b, a) S(b, b) S(b, c)

1 1 0 0 0 1 1
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Example: dz.(Ax.dy.R(x,y) A S(v,2)) A =R(a, 2)

Fx.3y.(R(x,y) A

A Ay.(R(x,y) A Ay (R(x, y) A

S(y,2)) S(y,2))
[b] [c]
Ay.(R(x,y) A Ay.(R(x. y) A Ay.(R(x,y) A
S(y,2)) S(,2) S(,2))
[a,a) [a,b] [a,c]
(R(x,y) A (R(x, y) A (R(x,y) A
S(y,2)) S(v,2)) S0, 2)
[a, b, b) [a.b,c] ---
R(a,a) R(a, b) R(a,c) . S(a, a) . S(b, a) S(b,b) S(b, )

1 1 0 0 0 1 1
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Example: dz.(Ax.dy.R(x,y) A S(v,2)) A =R(a, 2)

< Ax.Fy.(R(x,y) A A Ay.(R(x, y) A Fx.Fy.(R(x,y) A
= S(,2)) S(y,2)
E % [b] [e]
) [y
5 L L
< Ay.(R(x,y) A Ay.(R(x, y) A Ay.(R(x,y) A
— S(y,2)) S, 2) S0, 2)
j la,a] [a, b] [a,c]
S
g
=

(R(x,y) A
$(y,2)
la,b,a]

(R(x,y) A
$(y,2)
[a,b,b]

(R(x,y) A
$(,2)
la,byc] -

R(a,a) R(a, b) Ra,c) . S(a, a) . S(b, a) S(b, b) S(b, c)

1 1 0 0 0 1 1

Markus Krétzsch, 18 April 2023 Database Theory slide 17 of 20



Example: dz.(Ax.dy.R(x,y) A S(v,2)) A =R(a, 2)

Fz.(Fx. Ay (R(x, y) A
S(v,2)) A =R(a,2)

(Fx.3y.(R(x, y) A
S(y,2))) A —R(a,z)

(Fx.3y.(R(x, y) A
S(,2)) A =R(a,2)
[b]

(Fx.3y.(R(x, y) A
S(,2))) A —~R(a,z)

Ax.Fy.(R(x,y) A A Ay.(R(x, y) A Fx.Fy.(R(x,y) A

S(y,2)) S(y,2))
[b] [c]
Ay.(R(x,y) A Ay.(R(x. y) A Ay.(R(x,y) A
S(y,2) S(,2) S(,2))
[a,a] [a,b] [a,c]

(R(x,y) A
$(,2)
la,byc] -

(R(x,y) A
$(y,2)
la,b,a]

(R(x,y) A
$(y,2)
[a,b,b]

R(a,2)[a] ERC(“, 2)lal
R(a,2)[b) »

R(a,a) R(a, b) Ra,c) . S(a, a) . S(b, a) S(b, b) S(b, c)

1 1 0 0 0 1 1
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Example: dz.(Ax.dy.R(x,y) A S(v,2)) A =R(a, 2)

Fz.(FxAy.(R(x,y) A
S(v,2)) A =R(a,2)

(Fx.3y.(R(x, y) A
S(y,2))) A —R(a,z)
[a]

(Fx.3y.(R(x, y) A
S(,2))) A —R(a,z)
[b]

(Fx.3y.(R(x, y) A
S(,2))) A —~R(a,z)
c]

[

Fx.Ay.(R(x,y) A Fx.3y.(R(x,y) A Fx.Fy.(R(x,y) A

S(y,2)) S(y,2)

= [6] [c]

< Ay.(R(x,y) A Ay.(R(x, y) A Ay.(R(x,y) A
S(y,2) S(y,2) S(,2))
[a,a) [a,b] [a,c]

R(a,2)[b]

(R(x,y) A
$(y,2)
la,b,a]

(R(x,y) A
$(y,2)
[a,b,b]

(R(x,y) A
$(,2)
la,bycl -

R(a, 2)[a] E’ga, 2)lal

R(a,a) R(a, b) Ra,c) . S(a, a) . S(b, a) S(b, b) S(b, c)
1 1 0 . 0 0 1 1
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Example: dz.(Ax.dy.R(x,y) A S(v,2)) A =R(a, 2)

(Fx.3y.(R(x, y) A
S(y,2))) A —R(a,z)
[a]

A Fy.(R(x,y) A

[b]

JR(a, 2)[b]

y.(R(x,y) A
S(y,2))

la,a]

R(a,2)[b]

(R(x,y) A
$(y,2)
la,b,a]

R(a, 2)[a] E’g& 2)lal

Fz.(FxAy.(R(x,y) A
S(v,2)) A =R(a,2)

(Fx.3y.(R(x, y) A
S(v,2)) A =R(a, 2)
[b]

Fx.3y.(R(x,y) A
S(y,2)

1 1 0 0 0
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S(,2)

$(y,2)

NN

R(a,a) R(a, b) Ra,c) . S(a, a) . S(b, a) S(b, b)

(Fx.3y.(R(x, y) A

[

1

S(,2))) A —~R(a,z)
c]

Fx.Fy.(R(x,y) A
S(y,2))

y.(Rx,y) A

S, 2))

la,c]

(R(x,y) A

$(,2)
la,b,c] -

S(b,c)
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Summary and Outlook

The evaluation of FO queries is
® PSpace-complete for combined complexity
® PSpace-complete for query complexity
¢ AC’-complete for data complexity

Circuit complexities help to identify highly parallelisable problems in P

Open questions:
® Are there query languages with lower complexities? (next lecture)
® Which other computing problems are interesting?
* How can we study the expressiveness of query languages?
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