TECHNISCHE
@ UNIVERSITAT
DRESDEN

DATABASE THEORY

Lecture 5: Complexity of FO Query Answering (ll)

Markus Krotzsch
Knowledge-Based Systems

TU Dresden, 18 April 2023

More recent versions of this slide deck might be available.
For the most current version of this course, see
https://iccl.inf.tu-dresden.de/web/Database_Theory/en

https://iccl.inf.tu-dresden.de/web/Database_Theory_(SS2023)
https://iccl.inf.tu-dresden.de/web/Markus_Kr%C3%B6tzsch/en
https://iccl.inf.tu-dresden.de/web/Database_Theory/en

Review: Query Complexity

Query answering as decision problem
~» consider Boolean queries

Various notions of complexity:
® Combined complexity (complexity w.r.t. size of query and database instance)
® Data complexity (worst case complexity for any fixed query)
® Query complexity (worst case complexity for any fixed database instance)

Various common complexity classes:

L € NL € P € NP ¢ PSpace C ExpTime

Markus Krétzsch, 18 April 2023 Database Theory slide 2 of 20

Review: FO Combined Complexity

Theorem 4.1 The evaluation of FO queries is PSpace-complete with respect to
combined complexity.

We have actually shown something stronger:

Theorem 4.2 The evaluation of FO queries is PSpace-complete with respect to
query complexity.

This also holds true when restricting to domain-independent queries.

Markus Krétzsch, 18 April 2023 Database Theory slide 3 of 20

Data Complexity of FO Query Answering

The algorithm showed that FO query evaluation is in L
~» can we do any better?

Markus Krétzsch, 18 April 2023 Database Theory slide 4 of 20

Data Complexity of FO Query Answering

The algorithm showed that FO query evaluation is in L
~» can we do any better?

What could be better than L?

7CLCNLCPC...

Markus Krétzsch, 18 April 2023 Database Theory slide 4 of 20

Data Complexity of FO Query Answering

The algorithm showed that FO query evaluation is in L
~» can we do any better?

What could be better than L?
72cLCNLCPC...

~ we need to define circuit complexities first

Markus Krétzsch, 18 April 2023 Database Theory slide 4 of 20

Boolean Circuits

Definition 5.1: A Boolean circuit is a finite, directed, acyclic graph where
® cach node that has no predecessors is an input node

® each node that is not an input node is one of the following types of logical
gate: AND, OR, NOT

® one or more nodes are designated output nodes

~> we will only consider Boolean circuits with exactly one output

~» propositional logic formulae are Boolean circuits with one output and gates of fanout < 1

Markus Krétzsch, 18 April 2023 Database Theory slide 5 of 20

Example

A Boolean circuit over an input string x1x, . .. x,, of length n

Markus Krétzsch, 18 April 2023 Database Theory slide 6 of 20

Example

A Boolean circuit over an input string x1x, . .. x,, of length n

(n? gates)

Corresponds to formula (x; Ax2) V (x; Ax3) V...V (Xp—1 AXy)
~» accepts all strings with at least two 1s

Markus Krétzsch, 18 April 2023 Database Theory

slide 6 of 20

Circuits as a Model for Parallel Computation

Previous example:

~> n* processors working in parallel
~»> computation finishes in 2 steps

® size: number of gates = total number of computing steps
® depth: longest path of gates = time for parallel computation

~> circuits as a refinement of polynomial time that takes parallelizability into account

Markus Krétzsch, 18 April 2023 Database Theory slide 7 of 20

Solving Problems With Circuits

Observation: the input size is “hard-wired” in circuits
~» each circuit only has a finite number of different inputs
~> not a computationally interesting problem

How can we solve interesting problems with Boolean circuits?

Markus Krétzsch, 18 April 2023 Database Theory

slide 8 of 20

Solving Problems With Circuits

Observation: the input size is “hard-wired” in circuits
~» each circuit only has a finite number of different inputs
~> not a computationally interesting problem

How can we solve interesting problems with Boolean circuits?

Definition 5.2: A uniform family of Boolean circuits is a set of circuits C, (n > 0)
that can easily? be computed from n.

A language £ C {0, 1}* is decided by a uniform family (C,),>0 of Boolean circuits if
for each word w of length |w]:

we L ifandonlyif Cpy(w) =1

2We don’t discuss the details here; see course Complexity Theory.

Markus Krétzsch, 18 April 2023 Database Theory slide 8 of 20

Measuring Complexity with Boolean Circuits

How to measure the computing power of Boolean circuits?

Relevant metrics:

® size of the circuit: overall number of gates
(as function of input size)

® depth of the circuit: longest path of gates
(as function of input size)

e fan in: two inputs per gate or any number of inputs per gate?

Markus Krétzsch, 18 April 2023 Database Theory slide 9 of 20

Measuring Complexity with Boolean Circuits

How to measure the computing power of Boolean circuits?

Relevant metrics:

® size of the circuit: overall number of gates
(as function of input size)

® depth of the circuit: longest path of gates
(as function of input size)

e fan in: two inputs per gate or any number of inputs per gate?

Important classes of circuits: small-depth circuits

Definition 5.3: (C,),s0 is a family of small-depth circuits if
® the size of C, is polynomial in n,
e the depth of C, is poly-logarithmic in n, that is, O(log" n).

Markus Krétzsch, 18 April 2023 Database Theory slide 9 of 20

The Complexity Classes NC and AC

Two important types of small-depth circuits:

Definition 5.4: NC’ is the class of problems that can be solved by uniform fami-
lies of circuits (C,)us0 Of fan-in < 2, size polynomial in n, and depth in O(log* n).

The class NC is defined as NC = ;-0 NCF.
(“Nick's Class” named after Nicholas Pippenger by Stephen Cook)

Definition 5.5: AC* and AC are defined like NC* and NC, respectively, but for cir-
cuits with arbitrary fan-in.
(A is for “Alternating”: AND-OR gates alternate in such circuits)

Markus Krétzsch, 18 April 2023 Database Theory slide 10 of 20

family of polynomial size,
constant depth,

arbitrary fan-in circuits
~ in AC®

Markus Krétzsch, 18 April 2023 Database Theory slide 11 of 20

family of polynomial size,
constant depth,

arbitrary fan-in circuits
~ in AC®

We can eliminate arbitrary fan-ins by using more layers of gates:

A

(n? /4 gates)

(V) /2 gtes family of polynomial size,
logarithmic depth,
o) bounded fan-in circuits
~ in NC!

X1 X2 X3 X4 Xs .. Xn

Markus Krétzsch, 18 April 2023 Database Theory slide 11 of 20

Relationships of Circuit Complexity Classes

The previous sketch can be generalised:
NC® c AC’ cNC' cAC' c...c AC*cNC**' c...

Only few inclusions are known to be proper: NC° c AC® c NC!

Markus Krétzsch, 18 April 2023 Database Theory slide 12 of 20

Relationships of Circuit Complexity Classes

The previous sketch can be generalised:
NC® c AC’ cNC' cAC' c...c AC*cNC**' c...

Only few inclusions are known to be proper: NC° c AC® c NC!

Direct consequence of above hierarchy: NC = AC
Interesting relations to other classes:

NC’ c AC’ c NC' cLcCNLCAC'c...cNCcP

Intuition:
® Problems in NC are parallelisable (known from definition)
® Problems in P\ NC are inherently sequential (educated guess)

However: it is not known if NC # P

Markus Krétzsch, 18 April 2023 Database Theory slide 12 of 20

Back to Databases ...

Theorem 5.6: The evaluation of FO queries is complete for (logtime uniform) AC’
with respect to data complexity.

Proof:

® Membership: For a fixed Boolean FO query, provide a uniform construction for a
small-depth circuit based on the size of a database

® Hardness: Show that circuits can be transformed into Boolean FO queries in
logarithmic time (not on a standard TM ... not in this lecture)

Markus Krétzsch, 18 April 2023 Database Theory slide 13 of 20

From Query to Circuit

Assumptions:
® query and database schema is fixed
e database instance (and thus active domain) are variable

Construct circuit uniformly based on size of active domain

Markus Krétzsch, 18 April 2023 Database Theory

slide 14 of 20

From Query to Circuit

Assumptions:
® query and database schema is fixed
e database instance (and thus active domain) are variable

Construct circuit uniformly based on size of active domain

Sketch of construction:

® one input node for each possible database tuple (over given schema and active domain)
~> true or false depending on whether tuple is present or not

® Recursively, for each subformula, introduce a gate for each possible tuple (instantiation) of
this formula
~» true or false depending on whether the subformula holds for this tuple or not

® | ogical operators correspond to gate types: basic operators obvious, YV as generalised
conjunction, 1 as generalised disjunction

® subformula with n free variables ~ |adom|" gates
~» especially: |]adom|® = 1 output gate for Boolean query

Markus Krétzsch, 18 April 2023 Database Theory slide 14 of 20

Example

We consider the formula
Az.(Ax.Fy.R(x,y) A S(v,2)) A =R(a, 7)
Over the database instance:
R: S:
a | a b|b
a | b b | c

Active domain: {a, b, c}

Markus Krétzsch, 18 April 2023 Database Theory slide 15 of 20

Example: dz.(Ax.dy.R(x,y) A S(v,2)) A =R(a, 2)

R(a,a) R(a, b) Ra,c) . S(a, a) . S(b, a) S(b,b) S(b,)

1 1 0 0 0 1 1
Markus Krétzsch, 18 April 2023 Database Theory slide 16 of 20

Example: dz.(Ax.dy.R(x,y) A S(v,2)) A =R(a, 2)

(R(x,y) A (R(x,y) A (R(x,y) A (R(x,y) A
S(,2)) S(y,2)) S(v,2)) S0, 2)
la,a,a] [a,b,a] [a,b,b] la,b,c] -

R(a,a) R(a, b) Ra,c) . S(a, a) . S(b, a) S(b, b) S(b, c)

1 1 0 0 0 1 1
Markus Krétzsch, 18 April 2023 Database Theory slide 16 of 20

Example: dz.(Ax.dy.R(x,y) A S(v,2)) A =R(a, 2)

Fx.3y.(R(x,y) A

A Ay.(R(x,y) A Ay (R(x, y) A

S(y,2)) S(y,2))
[b] [c]
Ay.(R(x,y) A Ay.(R(x. y) A Ay.(R(x,y) A
S(y,2)) S(,2) S(,2))
[a,a) [a,b] [a,c]
(R(x,y) A (R(x, y) A (R(x,y) A
S(y,2)) S(v,2)) S0, 2)
[a, b, b) [a.b,c] ---
R(a,a) R(a, b) R(a,c) . S(a, a) . S(b, a) S(b,b) S(b,)

1 1 0 0 0 1 1
Markus Krétzsch, 18 April 2023 Database Theory slide 17 of 20

Example: dz.(Ax.dy.R(x,y) A S(v,2)) A =R(a, 2)

< Ax.Fy.(R(x,y) A A Ay.(R(x, y) A Fx.Fy.(R(x,y) A
= S(,2)) S(y,2)
E % [b] [e]
) [y
5 L L
< Ay.(R(x,y) A Ay.(R(x, y) A Ay.(R(x,y) A
— S(y,2)) S, 2) S0, 2)
j la,a] [a, b] [a,c]
S
g
=

(R(x,y) A
$(y,2)
la,b,a]

(R(x,y) A
$(y,2)
[a,b,b]

(R(x,y) A
$(,2)
la,byc] -

R(a,a) R(a, b) Ra,c) . S(a, a) . S(b, a) S(b, b) S(b, c)

1 1 0 0 0 1 1

Markus Krétzsch, 18 April 2023 Database Theory slide 17 of 20

Example: dz.(Ax.dy.R(x,y) A S(v,2)) A =R(a, 2)

Fz.(Fx. Ay (R(x, y) A
S(v,2)) A =R(a,2)

(Fx.3y.(R(x, y) A
S(y,2))) A —R(a,z)

(Fx.3y.(R(x, y) A
S(,2)) A =R(a,2)
[b]

(Fx.3y.(R(x, y) A
S(,2))) A —~R(a,z)

Ax.Fy.(R(x,y) A A Ay.(R(x, y) A Fx.Fy.(R(x,y) A

S(y,2)) S(y,2))
[b] [c]
Ay.(R(x,y) A Ay.(R(x. y) A Ay.(R(x,y) A
S(y,2) S(,2) S(,2))
[a,a] [a,b] [a,c]

(R(x,y) A
$(,2)
la,byc] -

(R(x,y) A
$(y,2)
la,b,a]

(R(x,y) A
$(y,2)
[a,b,b]

R(a,2)[a] ERC(“, 2)lal
R(a,2)[b) »

R(a,a) R(a, b) Ra,c) . S(a, a) . S(b, a) S(b, b) S(b, c)

1 1 0 0 0 1 1
Markus Krétzsch, 18 April 2023 Database Theory slide 18 of 20

Example: dz.(Ax.dy.R(x,y) A S(v,2)) A =R(a, 2)

Fz.(FxAy.(R(x,y) A
S(v,2)) A =R(a,2)

(Fx.3y.(R(x, y) A
S(y,2))) A —R(a,z)
[a]

(Fx.3y.(R(x, y) A
S(,2))) A —R(a,z)
[b]

(Fx.3y.(R(x, y) A
S(,2))) A —~R(a,z)
c]

[

Fx.Ay.(R(x,y) A Fx.3y.(R(x,y) A Fx.Fy.(R(x,y) A

S(y,2)) S(y,2)

= [6] [c]

< Ay.(R(x,y) A Ay.(R(x, y) A Ay.(R(x,y) A
S(y,2) S(y,2) S(,2))
[a,a) [a,b] [a,c]

R(a,2)[b]

(R(x,y) A
$(y,2)
la,b,a]

(R(x,y) A
$(y,2)
[a,b,b]

(R(x,y) A
$(,2)
la,bycl -

R(a, 2)[a] E’ga, 2)lal

R(a,a) R(a, b) Ra,c) . S(a, a) . S(b, a) S(b, b) S(b, c)
1 1 0 . 0 0 1 1

Markus Krétzsch, 18 April 2023 Database Theory slide 19 of 20

Example: dz.(Ax.dy.R(x,y) A S(v,2)) A =R(a, 2)

(Fx.3y.(R(x, y) A
S(y,2))) A —R(a,z)
[a]

A Fy.(R(x,y) A

[b]

JR(a, 2)[b]

y.(R(x,y) A
S(y,2))

la,a]

R(a,2)[b]

(R(x,y) A
$(y,2)
la,b,a]

R(a, 2)[a] E’g& 2)lal

Fz.(FxAy.(R(x,y) A
S(v,2)) A =R(a,2)

(Fx.3y.(R(x, y) A
S(v,2)) A =R(a, 2)
[b]

Fx.3y.(R(x,y) A
S(y,2)

1 1 0 0 0

Markus Krétzsch, 18 April 2023 Database Theory

Ay.(R(x. y) A
S(,2)

$(y,2)

NN

R(a,a) R(a, b) Ra,c) . S(a, a) . S(b, a) S(b, b)

(Fx.3y.(R(x, y) A

[

1

S(,2))) A —~R(a,z)
c]

Fx.Fy.(R(x,y) A
S(y,2))

y.(Rx,y) A

S, 2))

la,c]

(R(x,y) A

$(,2)
la,b,c] -

S(b,c)

slide 19 of 20

Example: dz.(Ax.dy.R(x,y) A S(v,2)) A =R(a, 2)

(Fx.3y.(R(x, y) A
S(y,2))) A —R(a,z)
[a]

A Fy.(R(x,y) A

[b]

JR(a, 2)[b]

y.(R(x,y) A
S(y,2))

la,a]

R(a,2)[b]

(R(x,y) A
$(y,2)
la,b,a]

R(a, 2)[a] E’g& 2)lal

Fz.(FxAy.(R(x,y) A
S(v,2)) A =R(a,2)

(Fx.3y.(R(x, y) A
S(v,2)) A =R(a, 2)
[b]

Fx.3y.(R(x,y) A
S(y,2)

1 1 0 0 0

Markus Krétzsch, 18 April 2023 Database Theory

Ay.(R(x. y) A
S(,2)

$(y,2)

NN

R(a,a) R(a, b) Ra,c) . S(a, a) . S(b, a) S(b, b)

(Fx.3y.(R(x, y) A

[

1

S(,2))) A —~R(a,z)
c]

Fx.Fy.(R(x,y) A
S(y,2))

y.(Rx,y) A

S, 2))

la,c]

(R(x,y) A

$(,2)
la,b,c] -

S(b,c)

slide 19 of 20

Example: dz.(Ax.dy.R(x,y) A S(v,2)) A =R(a, 2)

(Fx.3y.(R(x, y) A
S(y,2))) A —R(a,z)
[a]

A Fy.(R(x,y) A

[b]

JR(a, 2)[b]

y.(R(x,y) A
S(y,2))

la,a]

R(a,2)[b]

(R(x,y) A
$(y,2)
la,b,a]

R(a, 2)[a] E’g& 2)lal

Fz.(FxAy.(R(x,y) A
S(v,2)) A =R(a,2)

(Fx.3y.(R(x, y) A
S(v,2)) A =R(a, 2)
[b]

Fx.3y.(R(x,y) A
S(y,2)

1 1 0 0 0

Markus Krétzsch, 18 April 2023 Database Theory

Ay.(R(x. y) A
S(,2)

$(y,2)

NN

R(a,a) R(a, b) Ra,c) . S(a, a) . S(b, a) S(b, b)

(Fx.3y.(R(x, y) A

[

1

S(,2))) A —~R(a,z)
c]

Fx.Fy.(R(x,y) A
S(y,2))

y.(Rx,y) A

S, 2))

la,c]

(R(x,y) A

$(,2)
la,b,c] -

S(b,c)

slide 19 of 20

Example: dz.(Ax.dy.R(x,y) A S(v,2)) A =R(a, 2)

Fz.(FxAy.(R(x,y) A
S(v,2)) A =R(a,2)

(Fx.3y.(R(x, y) A

(Fx.3y.(R(x, y) A
S(y,2))) A —R(a,z)
[a]

(Fx.3y.(R(x, y) A
S(v,2))) A ~R(a,z)
[b]

S(,2))) A —~R(a,z)
[c]

Fx.Ay.(R(x,y) A Fx.3y.(R(x,y) A Fx.Fy.(R(x,y) A

S(y,2)) S(y,2))
[b] [e]
Ay.(R(x,y) A Ay.(R(x. y) A Ay.(R(x,y) A
S(y,2)) S(,2) S0, 2)
la,a) [a, b] [a,c]

R(a,2)[b]

(R(x,y) A
$(y,2)
la,b,a]

(R(x,y) A
$(y,2)
[a,b,b]

NN
S(b, a) S(b, b) S(b, c)

1 1 0 0 0 1 1
Markus Krétzsch, 18 April 2023

(R(x,y) A
$(,2)
la,bycl -

R(a, 2)[a] E’g& 2)lal

R(a,a) R(a, b) R(a,c) S(a, a)

Database Theory slide 19 of 20

Example: dz.(Ax.dy.R(x,y) A S(v,2)) A =R(a, 2)

Fz.(FxAy.(R(x,y) A
S(v,2)) A =R(a,2)

(Fx.3y.(R(x, y) A

(Fx.3y.(R(x, y) A
S(y,2))) A —R(a,z)
[a]

(Fx.3y.(R(x, y) A
S(v,2))) A ~R(a,z)
[b]

S(,2))) A —~R(a,z)
[c]

Fx.Ay.(R(x,y) A Fx.3y.(R(x,y) A Fx.Fy.(R(x,y) A

S(y,2)) S(y,2))
[b] [e]
Ay.(R(x,y) A Ay.(R(x. y) A Ay.(R(x,y) A
S(y,2)) S(,2) S0, 2)
la,a) [a, b] [a,c]

R(a,2)[b]

(R(x,y) A
$(y,2)
la,b,a]

(R(x,y) A
$(y,2)
[a,b,b]

NN
S(b, a) S(b, b) S(b, c)

1 1 0 0 0 1 1
Markus Krétzsch, 18 April 2023

(R(x,y) A
$(,2)
la,bycl -

R(a, 2)[a] E’g& 2)lal

R(a,a) R(a, b) R(a,c) S(a, a)

Database Theory slide 19 of 20

Summary and Outlook

The evaluation of FO queries is
® PSpace-complete for combined complexity
® PSpace-complete for query complexity
¢ AC’-complete for data complexity

Circuit complexities help to identify highly parallelisable problems in P

Open questions:
® Are there query languages with lower complexities? (next lecture)
® Which other computing problems are interesting?
* How can we study the expressiveness of query languages?

Markus Krétzsch, 18 April 2023 Database Theory slide 20 of 20

