
Fakultät Informatik, Institut für Künstliche Intelligenz, Professur Computational Logic

THEORETISCHE INFORMATIK UND LOGIK

11. Vorlesung: NL und PSpace

Sebastian Rudolph

Folien:© Markus Krötzsch, https://iccl.inf.tu-dresden.de/web/TheoLog2017, CC BY 3.0 DE

TU Dresden, 19. Mai 2025

https://iccl.inf.tu-dresden.de/web/Computational_Logic
https://iccl.inf.tu-dresden.de/web/TheoLog2025
https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph
https://iccl.inf.tu-dresden.de/web/Markus_Kr%C3%B6tzsch


NP-vollständige Probleme

NP-vollständige Probleme
= Probleme, die mindestens so schwer sind wie alle anderen Probleme in NP
= die schwersten Probleme in NP.

Alles oder nichts:
Entweder sind alle NP-vollständigen Probleme in P,
oder kein einziges NP-vollständiges Problem ist in P.

Ladner: „Alle glauben P , NP. Dann gibt es aber auch beliebig viele Probleme in NP,
die nicht NP-vollständig sind und dennoch nicht in P liegen.“

Anders gesagt: Neben den „schwersten“ Problemen in NP gibt es dann auch noch
viele „mittelschwere“, welche dennoch nicht in P liegen. Bisher wissen wir nicht, welche
das sind.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 11 Folie 2 von 27

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph


NP-vollständige Probleme

NP-vollständige Probleme
= Probleme, die mindestens so schwer sind wie alle anderen Probleme in NP
= die schwersten Probleme in NP.

Alles oder nichts:
Entweder sind alle NP-vollständigen Probleme in P,
oder kein einziges NP-vollständiges Problem ist in P.

Ladner: „Alle glauben P , NP. Dann gibt es aber auch beliebig viele Probleme in NP,
die nicht NP-vollständig sind und dennoch nicht in P liegen.“

Anders gesagt: Neben den „schwersten“ Problemen in NP gibt es dann auch noch
viele „mittelschwere“, welche dennoch nicht in P liegen. Bisher wissen wir nicht, welche
das sind.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 11 Folie 2 von 27

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph


Leichte NP-vollständige Probleme

Pseudopolynomielle Probleme sind polynomiell in der Größe von Eingabe und
gegebenen Zahlenbeträgen.

Das macht sie in der Praxis oft eher einfach.

Beispiel: Das Rucksackproblem ist nur dann NP-vollständig, wenn die Gewichte der
Gegenstände über-polynomiell wachsen dürfen. Ein Problem mit so schweren Gegen-
ständen ist aber nur dann interessant, wenn auch der Rucksack eine sehr große Ka-
pazität hat. Alternativ könnte man mit sehr hoher Genauigkeit wiegen.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 11 Folie 3 von 27

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph


NL

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 11 Folie 4 von 27

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph


Die Macht des Speichers

Selbst innerhalb kleiner Speichergrenzen ist sehr viel machbar:

• SAT ist mit linearem Speicher lösbar:
Wir iterieren durch alle Wahrheitswertbelegungen (jeweils linear groß) und testen
jeweils, ob die Formel erfüllt ist (logarithmischer Speicher für ein paar Zeiger und
Zwischenergebnisse).

• Linearer Speicher genügt zur Erkennung kontextsensitiver Sprachen (durch linear
beschränkte Automaten, LBA).

• Jedes NP-vollständige Problem ist in polynomiellem Speicher lösbar:
Wir iterieren durch alle polynomiellen Zertifikate und simulieren einen
polynomiellen Verifikator auf ihnen.

{ Sehr kleine Speichergrenzen sind sinnvoll.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 11 Folie 5 von 27

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph


Die Macht des Speichers

Selbst innerhalb kleiner Speichergrenzen ist sehr viel machbar:

• SAT ist mit linearem Speicher lösbar:
Wir iterieren durch alle Wahrheitswertbelegungen (jeweils linear groß) und testen
jeweils, ob die Formel erfüllt ist (logarithmischer Speicher für ein paar Zeiger und
Zwischenergebnisse).

• Linearer Speicher genügt zur Erkennung kontextsensitiver Sprachen (durch linear
beschränkte Automaten, LBA).

• Jedes NP-vollständige Problem ist in polynomiellem Speicher lösbar:
Wir iterieren durch alle polynomiellen Zertifikate und simulieren einen
polynomiellen Verifikator auf ihnen.

{ Sehr kleine Speichergrenzen sind sinnvoll.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 11 Folie 5 von 27

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph


Die Macht des Speichers

Selbst innerhalb kleiner Speichergrenzen ist sehr viel machbar:

• SAT ist mit linearem Speicher lösbar:
Wir iterieren durch alle Wahrheitswertbelegungen (jeweils linear groß) und testen
jeweils, ob die Formel erfüllt ist (logarithmischer Speicher für ein paar Zeiger und
Zwischenergebnisse).

• Linearer Speicher genügt zur Erkennung kontextsensitiver Sprachen (durch linear
beschränkte Automaten, LBA).

• Jedes NP-vollständige Problem ist in polynomiellem Speicher lösbar:
Wir iterieren durch alle polynomiellen Zertifikate und simulieren einen
polynomiellen Verifikator auf ihnen.

{ Sehr kleine Speichergrenzen sind sinnvoll.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 11 Folie 5 von 27

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph


Die Macht des Speichers

Selbst innerhalb kleiner Speichergrenzen ist sehr viel machbar:

• SAT ist mit linearem Speicher lösbar:
Wir iterieren durch alle Wahrheitswertbelegungen (jeweils linear groß) und testen
jeweils, ob die Formel erfüllt ist (logarithmischer Speicher für ein paar Zeiger und
Zwischenergebnisse).

• Linearer Speicher genügt zur Erkennung kontextsensitiver Sprachen (durch linear
beschränkte Automaten, LBA).

• Jedes NP-vollständige Problem ist in polynomiellem Speicher lösbar:
Wir iterieren durch alle polynomiellen Zertifikate und simulieren einen
polynomiellen Verifikator auf ihnen.

{ Sehr kleine Speichergrenzen sind sinnvoll.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 11 Folie 5 von 27

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph


Erinnerung: L

LogSpace (L): Sprachen, die man mit sehr wenig Arbeitsspeicher erkennen kann.

Wesentliche Datentypen:

• Zähler, Maximalwert polynomiell beschränkt

• Zeiger aufs (Nur-Lese-)Eingabeband
Jeweils fest deklariert, d.h. ihre Anzahl hängt nicht von der Eingabe ab.

Wesentliche Programmierfeatures:

• Initialisiere Zeiger oder Zähler auf festen Wert;

• inkrementiere/dekrementiere Zeiger oder Zähler;

• vergleiche Speicherinhalte von zwei Zeigern oder zwei Zählern (und führe je nach
Ergebnis anderen Code aus).

Optionales Ausgabeband: Jede Zelle ist einmalig beschreibbar und nicht (wieder) lesbar.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 11 Folie 6 von 27

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph


NLogSpace

Nichtdeterministische TM mit logarithmischem Speicher:

NL = NLogSpace = NSpace(log n)

Alternativ:
„Probleme, deren Lösung in L verifiziert werden kann.“

• Gleiche Programmierfeatures wie in L

• Aber nichtdeterministische Operationen möglich,
z.B. „setze Zeiger auf eine zufällige Eingabeposition“

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 11 Folie 7 von 27

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph


Beispiel: Erreichbarkeit

Das Problem der (s-t-)Erreichbarkeit in gerichteten Graphen lautet wie folgt:

Gegeben: Ein gerichteter Graph G mit Knoten s und t.
Frage: Gibt es in G einen gerichteten Pfad von s nach t?

Satz: Erreichbarkeit in gerichteten Graphen liegt in NL.

Beweis (Algorithmus):

• Wir verwenden einen Zeiger p auf einen Knoten (in der Eingabe) und einen Zähler z.

• Initialisiere ∗p = s und z = 1.
• Schleife:

– Falls ∗p = t dann akzeptiere;
– falls z = Anzahl der Knoten in G dann verwirf;
– andernfalls: Inkrementiere z und setze p auf einen Nachfolger des aktuellen

Knotens ∗p (nichtdeterministisch). □

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 11 Folie 8 von 27

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph


Beispiel: Erreichbarkeit

Das Problem der (s-t-)Erreichbarkeit in gerichteten Graphen lautet wie folgt:

Gegeben: Ein gerichteter Graph G mit Knoten s und t.
Frage: Gibt es in G einen gerichteten Pfad von s nach t?

Satz: Erreichbarkeit in gerichteten Graphen liegt in NL.

Beweis (Algorithmus):

• Wir verwenden einen Zeiger p auf einen Knoten (in der Eingabe) und einen Zähler z.

• Initialisiere ∗p = s und z = 1.
• Schleife:

– Falls ∗p = t dann akzeptiere;
– falls z = Anzahl der Knoten in G dann verwirf;
– andernfalls: Inkrementiere z und setze p auf einen Nachfolger des aktuellen

Knotens ∗p (nichtdeterministisch). □

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 11 Folie 8 von 27

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph


Beispiel: Erreichbarkeit

Das Problem der (s-t-)Erreichbarkeit in gerichteten Graphen lautet wie folgt:

Gegeben: Ein gerichteter Graph G mit Knoten s und t.
Frage: Gibt es in G einen gerichteten Pfad von s nach t?

Satz: Erreichbarkeit in gerichteten Graphen liegt in NL.

Beweis (Algorithmus):

• Wir verwenden einen Zeiger p auf einen Knoten (in der Eingabe) und einen Zähler z.

• Initialisiere ∗p = s und z = 1.
• Schleife:

– Falls ∗p = t dann akzeptiere;
– falls z = Anzahl der Knoten in G dann verwirf;
– andernfalls: Inkrementiere z und setze p auf einen Nachfolger des aktuellen

Knotens ∗p (nichtdeterministisch). □

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 11 Folie 8 von 27

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph


NL-Vollständigkeit

Man kann NL-Schwere ähnlich wie für NP definieren:

• An Stelle polynomieller Reduktionen verwendet man LogSpace-Reduktionen

• NL-schwer: jedes Problem in NL ist darauf logspace-reduzierbar

• NL-vollständig: in NL und NL-schwer

Intuition: NL-vollständige Probleme sind die schwersten in NL.

Beispiel: Erreichbarkeit in gerichteten Graphen ist NL-vollständig.

Beispiel: Erreichbarkeit in ungerichteten Graphen ist in NL aber (vermutlich) nicht
NL-schwer: Das Problem liegt in L (Omer Reingold, 2005).

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 11 Folie 9 von 27

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph


NL-Vollständigkeit

Man kann NL-Schwere ähnlich wie für NP definieren:

• An Stelle polynomieller Reduktionen verwendet man LogSpace-Reduktionen

• NL-schwer: jedes Problem in NL ist darauf logspace-reduzierbar

• NL-vollständig: in NL und NL-schwer

Intuition: NL-vollständige Probleme sind die schwersten in NL.

Beispiel: Erreichbarkeit in gerichteten Graphen ist NL-vollständig.

Beispiel: Erreichbarkeit in ungerichteten Graphen ist in NL aber (vermutlich) nicht
NL-schwer: Das Problem liegt in L (Omer Reingold, 2005).

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 11 Folie 9 von 27

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph


NL-Vollständigkeit

Man kann NL-Schwere ähnlich wie für NP definieren:

• An Stelle polynomieller Reduktionen verwendet man LogSpace-Reduktionen

• NL-schwer: jedes Problem in NL ist darauf logspace-reduzierbar

• NL-vollständig: in NL und NL-schwer

Intuition: NL-vollständige Probleme sind die schwersten in NL.

Beispiel: Erreichbarkeit in gerichteten Graphen ist NL-vollständig.

Beispiel: Erreichbarkeit in ungerichteten Graphen ist in NL aber (vermutlich) nicht
NL-schwer: Das Problem liegt in L (Omer Reingold, 2005).

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 11 Folie 9 von 27

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph


Quiz: Erreichbarkeit

Quiz: Gegeben sei der ungerichtete Graph G = (V, E) mit . . .

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 11 Folie 10 von 27

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph


L, NL und coNL

Rückblick: Der Satz von Savitch besagt, dass NPSpace = PSpace.
Daraus folgt auch NPSpace = coNPSpace.

Für logarithmischen Speicher ergibt Savitchs Ergebnis aber lediglich:1

NL ⊆ DSpace
(
log2 n

)
{ Daraus folgt nicht NL ⊆ L!

Man weiß dennoch:

Satz (Immerman 1987, Szelepcsényi 1987): NL = coNL.

Beispiel: Nichterreichbarkeit in gerichteten Graphen kann in NL entschieden werden.
Betrachtet man den NL-Algorithmus für Erreichbarkeit, dann ist das zunächst überra-
schend . . .

(Eng verwandtes Resultat: Kontextsensitive Sprachen sind unter Komplement abgeschlossen.)

1Notation: log2 n = (log n)2 , log
(
n2
)
= 2 log n.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 11 Folie 11 von 27

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph


L, NL und coNL

Rückblick: Der Satz von Savitch besagt, dass NPSpace = PSpace.
Daraus folgt auch NPSpace = coNPSpace.

Für logarithmischen Speicher ergibt Savitchs Ergebnis aber lediglich:1

NL ⊆ DSpace
(
log2 n

)
{ Daraus folgt nicht NL ⊆ L!

Man weiß dennoch:

Satz (Immerman 1987, Szelepcsényi 1987): NL = coNL.

Beispiel: Nichterreichbarkeit in gerichteten Graphen kann in NL entschieden werden.
Betrachtet man den NL-Algorithmus für Erreichbarkeit, dann ist das zunächst überra-
schend . . .

(Eng verwandtes Resultat: Kontextsensitive Sprachen sind unter Komplement abgeschlossen.)

1Notation: log2 n = (log n)2 , log
(
n2
)
= 2 log n.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 11 Folie 11 von 27

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph


L, NL und coNL

Rückblick: Der Satz von Savitch besagt, dass NPSpace = PSpace.
Daraus folgt auch NPSpace = coNPSpace.

Für logarithmischen Speicher ergibt Savitchs Ergebnis aber lediglich:1

NL ⊆ DSpace
(
log2 n

)
{ Daraus folgt nicht NL ⊆ L!

Man weiß dennoch:

Satz (Immerman 1987, Szelepcsényi 1987): NL = coNL.

Beispiel: Nichterreichbarkeit in gerichteten Graphen kann in NL entschieden werden.
Betrachtet man den NL-Algorithmus für Erreichbarkeit, dann ist das zunächst überra-
schend . . .

(Eng verwandtes Resultat: Kontextsensitive Sprachen sind unter Komplement abgeschlossen.)

1Notation: log2 n = (log n)2 , log
(
n2
)
= 2 log n.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 11 Folie 11 von 27

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph


L, NL und coNL

Rückblick: Der Satz von Savitch besagt, dass NPSpace = PSpace.
Daraus folgt auch NPSpace = coNPSpace.

Für logarithmischen Speicher ergibt Savitchs Ergebnis aber lediglich:1

NL ⊆ DSpace
(
log2 n

)
{ Daraus folgt nicht NL ⊆ L!

Man weiß dennoch:

Satz (Immerman 1987, Szelepcsényi 1987): NL = coNL.

Beispiel: Nichterreichbarkeit in gerichteten Graphen kann in NL entschieden werden.
Betrachtet man den NL-Algorithmus für Erreichbarkeit, dann ist das zunächst überra-
schend . . .

(Eng verwandtes Resultat: Kontextsensitive Sprachen sind unter Komplement abgeschlossen.)

1Notation: log2 n = (log n)2 , log
(
n2
)
= 2 log n.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 11 Folie 11 von 27

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph


PSpace

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 11 Folie 12 von 27

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph


Noch schwerere Probleme?

Beobachtung: Bisher waren alle entscheidbaren schweren Probleme der Vorlesung
auch in NP, d.h. ihre Lösung war leicht verifizierbar:

• Erfüllbarkeit, Hamiltonpfad, Clique, Rucksack: NP-vollständige Probleme mit
polynomiellen Verifikatoren

• Faktorisierung: in NP ∩ coNP

• Erreichbarkeit in Graphen: in NP (Zertifikat ist Pfad); sogar in P (z.B. Breitensuche)

Gibt es überhaupt noch schwerere entscheidbare Probleme?

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 11 Folie 13 von 27

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph


Beispiel: Schachrätsel

Matt in drei Zügen; Weiß ist am Zug
(Samuel Loyd, 1903)

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 11 Folie 14 von 27

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph


Beispiel: Schachrätsel

Matt in 262 Zügen; Weiß ist am Zug
(Lewis Stiller, 1995)

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 11 Folie 15 von 27

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph


Rückblick: Aussagenlogik

Rückblick: Aussagenlogik

• Aussagenlogische Formeln basieren auf Atomen (Propositionen, Variablen).

• Atome werden mit Junktoren verknüpft: ¬, ∧, ∨, →.
(Wir setzen immer Klammern zwischen verschiedene binäre Junktoren.)

• Wir erlauben außerdem die nullstelligen Operatoren ⊤ (wahr) und ⊥ (falsch).

• Belegungen ordnen Atomen Wahrheitswerte 1 oder 0 zu.

• SAT: Gegeben eine aussagenlogische Formel φ, existiert eine Belegung der
Atome in φ, für die φ wahr wird?

• Tautologie: Gegeben eine aussagenlogische Formel φ, wird φ für alle Belegungen
der Atome in φ wahr?

{ (Implizite) existenzielle und universelle Quantoren über Wahrheitswerten.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 11 Folie 16 von 27

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph


Rückblick: Aussagenlogik

Rückblick: Aussagenlogik

• Aussagenlogische Formeln basieren auf Atomen (Propositionen, Variablen).

• Atome werden mit Junktoren verknüpft: ¬, ∧, ∨, →.
(Wir setzen immer Klammern zwischen verschiedene binäre Junktoren.)

• Wir erlauben außerdem die nullstelligen Operatoren ⊤ (wahr) und ⊥ (falsch).

• Belegungen ordnen Atomen Wahrheitswerte 1 oder 0 zu.

• SAT: Gegeben eine aussagenlogische Formel φ, existiert eine Belegung der
Atome in φ, für die φ wahr wird?

• Tautologie: Gegeben eine aussagenlogische Formel φ, wird φ für alle Belegungen
der Atome in φ wahr?

{ (Implizite) existenzielle und universelle Quantoren über Wahrheitswerten.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 11 Folie 16 von 27

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph


Rückblick: Aussagenlogik

Rückblick: Aussagenlogik

• Aussagenlogische Formeln basieren auf Atomen (Propositionen, Variablen).

• Atome werden mit Junktoren verknüpft: ¬, ∧, ∨, →.
(Wir setzen immer Klammern zwischen verschiedene binäre Junktoren.)

• Wir erlauben außerdem die nullstelligen Operatoren ⊤ (wahr) und ⊥ (falsch).

• Belegungen ordnen Atomen Wahrheitswerte 1 oder 0 zu.

• SAT: Gegeben eine aussagenlogische Formel φ, existiert eine Belegung der
Atome in φ, für die φ wahr wird?

• Tautologie: Gegeben eine aussagenlogische Formel φ, wird φ für alle Belegungen
der Atome in φ wahr?

{ (Implizite) existenzielle und universelle Quantoren über Wahrheitswerten.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 11 Folie 16 von 27

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph


Rückblick: Aussagenlogik

Rückblick: Aussagenlogik

• Aussagenlogische Formeln basieren auf Atomen (Propositionen, Variablen).

• Atome werden mit Junktoren verknüpft: ¬, ∧, ∨, →.
(Wir setzen immer Klammern zwischen verschiedene binäre Junktoren.)

• Wir erlauben außerdem die nullstelligen Operatoren ⊤ (wahr) und ⊥ (falsch).

• Belegungen ordnen Atomen Wahrheitswerte 1 oder 0 zu.

• SAT: Gegeben eine aussagenlogische Formel φ, existiert eine Belegung der
Atome in φ, für die φ wahr wird?

• Tautologie: Gegeben eine aussagenlogische Formel φ, wird φ für alle Belegungen
der Atome in φ wahr?

{ (Implizite) existenzielle und universelle Quantoren über Wahrheitswerten.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 11 Folie 16 von 27

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph


Ein Problem in PSpace

Ein Beispiel für ein erstes typisches PSpace-Problem ergibt sich, wenn man SAT und
Tautologie verallgemeinert:

Eine Quantifizierte Boolesche Formel (QBF) ist eine logische Formel der folgenden
Form:

Q1p1. Q2p2. · · · Qℓpℓ.F[p1, . . . , pℓ]

mit i ≥ 0, Qi ∈ {∃,∀} Quantoren, pi aussagenlogischen Atomen (Variablen) und F einer
aussagenlogischen Formel mit Atomen p1, . . . , pℓ.

Beispiele:

• ∀p.∃q.(p→ q) ∧ (q→ p)
• ∀p1, p2, p3.∃q.(p1 ∨ p2 ∨ p3)→ ((p1 ∨ q) ∧ (¬q ∨ p2 ∨ p3))

Anmerkung: Wir sparen uns die äußerste Klammer sowie Klammern in Ketten von ∧ und ∨, und fassen gleiche Quantoren zusammen.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 11 Folie 17 von 27

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph


Ein Problem in PSpace

Ein Beispiel für ein erstes typisches PSpace-Problem ergibt sich, wenn man SAT und
Tautologie verallgemeinert:

Eine Quantifizierte Boolesche Formel (QBF) ist eine logische Formel der folgenden
Form:

Q1p1. Q2p2. · · · Qℓpℓ.F[p1, . . . , pℓ]

mit i ≥ 0, Qi ∈ {∃,∀} Quantoren, pi aussagenlogischen Atomen (Variablen) und F einer
aussagenlogischen Formel mit Atomen p1, . . . , pℓ.

Beispiele:

• ∀p.∃q.(p→ q) ∧ (q→ p)
• ∀p1, p2, p3.∃q.(p1 ∨ p2 ∨ p3)→ ((p1 ∨ q) ∧ (¬q ∨ p2 ∨ p3))

Anmerkung: Wir sparen uns die äußerste Klammer sowie Klammern in Ketten von ∧ und ∨, und fassen gleiche Quantoren zusammen.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 11 Folie 17 von 27

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph


Semantik von QBF

Jeder QBF-Formel Q wird ein eindeutiger Wahrheitswert W(Q) zugeordnet:

• QBF-Formeln ohne Atome (d.h. nur mit ⊤ und ⊥) werden wie aussagenlogische
Formeln evaluiert.

• W(∃p.F[p]) = 1 falls W(F[p/⊤]) = 1 oder W(F[p/⊥]) = 1;
• W(∀p.F[p]) = 1 falls W(F[p/⊤]) = 1 und W(F[p/⊥]) = 1.

Dabei heißt φ[p/⊤]: „φ mit p ersetzt durch ⊤“; analog für ⊥.

Beispiel:
W(∀p.∃q.(p→ q) ∧ (q→ p)) = 1

gdw. W(∃q.(⊤ → q) ∧ (q→ ⊤)) = 1 und

W(∃q.(⊥ → q) ∧ (q→ ⊥)) = 1

gdw. W((⊤ → ⊤) ∧ (⊤ → ⊤)) = 1 oder W((⊤ → ⊥) ∧ (⊥ → ⊤)) = 1 und

W((⊥ → ⊤) ∧ (⊤ → ⊥)) = 1 oder W((⊥ → ⊥) ∧ (⊥ → ⊥)) = 1

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 11 Folie 18 von 27

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph


Semantik von QBF

Jeder QBF-Formel Q wird ein eindeutiger Wahrheitswert W(Q) zugeordnet:

• QBF-Formeln ohne Atome (d.h. nur mit ⊤ und ⊥) werden wie aussagenlogische
Formeln evaluiert.

• W(∃p.F[p]) = 1 falls W(F[p/⊤]) = 1 oder W(F[p/⊥]) = 1;
• W(∀p.F[p]) = 1 falls W(F[p/⊤]) = 1 und W(F[p/⊥]) = 1.

Dabei heißt φ[p/⊤]: „φ mit p ersetzt durch ⊤“; analog für ⊥.

Beispiel:
W(∀p.∃q.(p→ q) ∧ (q→ p)) = 1

gdw. W(∃q.(⊤ → q) ∧ (q→ ⊤)) = 1 und

W(∃q.(⊥ → q) ∧ (q→ ⊥)) = 1

gdw. W((⊤ → ⊤) ∧ (⊤ → ⊤)) = 1 oder W((⊤ → ⊥) ∧ (⊥ → ⊤)) = 1 und

W((⊥ → ⊤) ∧ (⊤ → ⊥)) = 1 oder W((⊥ → ⊥) ∧ (⊥ → ⊥)) = 1

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 11 Folie 18 von 27

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph


Wahre QBF erkennen

Durch die Quantoren steht der Wahrheitswert jeder QBF fest, d.h. er hängt nicht von
Belegungen ab.

Das Problem TrueQBF ist wie folgt

Gegeben: Eine QBF Q.
Frage: Ist W(Q) = 1?

Beispiel: SAT lässt sich auf TrueQBF reduzieren, indem man jedes Atom der gege-
benen aussagenlogischen Formel existenziell quantifiziert.

Beispiel: Tautologie lässt sich auf TrueQBF reduzieren, indem man jedes Atom der
gegebenen aussagenlogischen Formel universell quantifiziert.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 11 Folie 19 von 27

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph


Wahre QBF erkennen

Durch die Quantoren steht der Wahrheitswert jeder QBF fest, d.h. er hängt nicht von
Belegungen ab.

Das Problem TrueQBF ist wie folgt

Gegeben: Eine QBF Q.
Frage: Ist W(Q) = 1?

Beispiel: SAT lässt sich auf TrueQBF reduzieren, indem man jedes Atom der gege-
benen aussagenlogischen Formel existenziell quantifiziert.

Beispiel: Tautologie lässt sich auf TrueQBF reduzieren, indem man jedes Atom der
gegebenen aussagenlogischen Formel universell quantifiziert.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 11 Folie 19 von 27

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph


Wahre QBF erkennen

Durch die Quantoren steht der Wahrheitswert jeder QBF fest, d.h. er hängt nicht von
Belegungen ab.

Das Problem TrueQBF ist wie folgt

Gegeben: Eine QBF Q.
Frage: Ist W(Q) = 1?

Beispiel: SAT lässt sich auf TrueQBF reduzieren, indem man jedes Atom der gege-
benen aussagenlogischen Formel existenziell quantifiziert.

Beispiel: Tautologie lässt sich auf TrueQBF reduzieren, indem man jedes Atom der
gegebenen aussagenlogischen Formel universell quantifiziert.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 11 Folie 19 von 27

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph


Quiz: TrueQBF

Jeder QBF-Formel Q wird ein eindeutiger Wahrheitswert W(Q) zugeordnet:
• QBF-Formeln ohne Atome (d.h. nur mit ⊤ und ⊥) werden wie aussagenlogische Formeln evaluiert.
• W(∃p.F[p]) = 1 falls W(F[p/⊤]) = 1 oder W(F[p/⊥]) = 1;
• W(∀p.F[p]) = 1 falls W(F[p/⊤]) = 1 und W(F[p/⊥]) = 1.

Dabei heißt φ[p/⊤]: „φ mit p ersetzt durch ⊤“; analog für ⊥.

Quiz: Welche der folgenden Quantifizierten Booleschen Formeln sind wahr? . . .

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 11 Folie 20 von 27

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph


TrueQBF in polynomiellem Speicher

Satz: TrueQBF ist in PSpace.

Beweis: Durch Angabe eines (Pseudo-)Algorithmus:

01 function TrueQBF(F) {
02 if F „hat keine Quantoren“ {
03 return „Aussagenlogische Auswertung von F“;
04 } else if F = ∃p.G {
05 return (TrueQBF(G[p/⊤]) OR TrueQBF(G[p/⊥]));
06 } else if F = ∀p.G {
07 return (TrueQBF(G[p/⊤]) AND TrueQBF(G[p/⊥])); } }

• Evaluation in Zeile 03 ist möglich in PSpace.
• Rekursionen in Zeilen 05 und 07 können der Reihe nach abgearbeitet werden,

wobei Speicher wiederverwendet wird.
• Jeder Rekursionsschritt benötigt polynomiellen Speicher.
• Maximale Rekursionstiefe ist die Anzahl der Atome (also linear in der Eingabe). □

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 11 Folie 21 von 27

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph


TrueQBF in polynomiellem Speicher

Satz: TrueQBF ist in PSpace.

Beweis: Durch Angabe eines (Pseudo-)Algorithmus:

01 function TrueQBF(F) {
02 if F „hat keine Quantoren“ {
03 return „Aussagenlogische Auswertung von F“;
04 } else if F = ∃p.G {
05 return (TrueQBF(G[p/⊤]) OR TrueQBF(G[p/⊥]));
06 } else if F = ∀p.G {
07 return (TrueQBF(G[p/⊤]) AND TrueQBF(G[p/⊥])); } }

• Evaluation in Zeile 03 ist möglich in PSpace.
• Rekursionen in Zeilen 05 und 07 können der Reihe nach abgearbeitet werden,

wobei Speicher wiederverwendet wird.
• Jeder Rekursionsschritt benötigt polynomiellen Speicher.
• Maximale Rekursionstiefe ist die Anzahl der Atome (also linear in der Eingabe). □

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 11 Folie 21 von 27

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph


PSpace-Schwere

Ein Problem Q ist genau dann PSpace-schwer, wenn für jedes Problem P in PSpace
eine polynomielle Reduktion P ≤p Q existiert. Q ist genau dann PSpace-vollständig,
wenn es PSpace-schwer ist und in PSpace liegt.

Satz: TrueQBF ist PSpace-schwer.

Beweisidee: Nächste Vorlesung.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 11 Folie 22 von 27

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph


PSpace-Schwere

Ein Problem Q ist genau dann PSpace-schwer, wenn für jedes Problem P in PSpace
eine polynomielle Reduktion P ≤p Q existiert. Q ist genau dann PSpace-vollständig,
wenn es PSpace-schwer ist und in PSpace liegt.

Satz: TrueQBF ist PSpace-schwer.

Beweisidee: Nächste Vorlesung.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 11 Folie 22 von 27

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph


PSpace-Schwere

Ein Problem Q ist genau dann PSpace-schwer, wenn für jedes Problem P in PSpace
eine polynomielle Reduktion P ≤p Q existiert. Q ist genau dann PSpace-vollständig,
wenn es PSpace-schwer ist und in PSpace liegt.

Satz: TrueQBF ist PSpace-schwer.

Beweisidee: Nächste Vorlesung.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 11 Folie 22 von 27

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph


QBF als Spiel

Man kann TrueQBF als Spiel auffassen:

• Das „Spielbrett“ ist eine QBF.

• Zwei Personen, Anton und Emilia, wählen der Reihe nach Wahrheitswerte.

• Steht ∀p vorn, so darf Anton einen Wert für p wählen und den Quantor löschen.

• Steht ∃p vorn, so darf Emilia einen Wert für p wählen und den Quantor löschen.

• Emilia gewinnt, wenn die Formel nach Entfernen aller Quantoren wahr wird;

• andernfalls gewinnt Anton.

Beobachtung: Emilia hat genau dann eine Gewinnstrategie im Formelspiel, wenn die
gegebene QBF wahr ist.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 11 Folie 23 von 27

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph


QBF als Spiel

Man kann TrueQBF als Spiel auffassen:

• Das „Spielbrett“ ist eine QBF.

• Zwei Personen, Anton und Emilia, wählen der Reihe nach Wahrheitswerte.

• Steht ∀p vorn, so darf Anton einen Wert für p wählen und den Quantor löschen.

• Steht ∃p vorn, so darf Emilia einen Wert für p wählen und den Quantor löschen.

• Emilia gewinnt, wenn die Formel nach Entfernen aller Quantoren wahr wird;

• andernfalls gewinnt Anton.

Beobachtung: Emilia hat genau dann eine Gewinnstrategie im Formelspiel, wenn die
gegebene QBF wahr ist.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 11 Folie 23 von 27

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph


Beispiel: Sipsers Geography

Ein Kinderspiel:

• Zwei Personen benennen abwechselnd Städte.

• Jede Stadt muss mit dem letzten Buchstaben der zuvor genannten beginnen.

• Wiederholungen sind verboten.

• Die erste Person, die keine Stadt mehr nennen kann, verliert.

Ein Mathematikerspiel:

• Zwei Personen markieren Knoten in einem gerichteten Graphen.

• Jeder Knoten muss ein Nachfolger des vorigen sein.

• Wiederholungen sind verboten.

• Die erste Person, die keinen Knoten markieren kann, verliert.

Entscheidungsproblem Geography:

Gegeben: Ein gerichteter Graph und ein Startknoten.
Frage: Hat die beginnende Person eine Gewinnstrategie für dieses Spiel?

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 11 Folie 24 von 27

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph


Beispiel: Sipsers Geography

Ein Kinderspiel:

• Zwei Personen benennen abwechselnd Städte.

• Jede Stadt muss mit dem letzten Buchstaben der zuvor genannten beginnen.

• Wiederholungen sind verboten.

• Die erste Person, die keine Stadt mehr nennen kann, verliert.

Ein Mathematikerspiel:

• Zwei Personen markieren Knoten in einem gerichteten Graphen.

• Jeder Knoten muss ein Nachfolger des vorigen sein.

• Wiederholungen sind verboten.

• Die erste Person, die keinen Knoten markieren kann, verliert.

Entscheidungsproblem Geography:

Gegeben: Ein gerichteter Graph und ein Startknoten.
Frage: Hat die beginnende Person eine Gewinnstrategie für dieses Spiel?

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 11 Folie 24 von 27

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph


Beispiel: Sipsers Geography

Ein Kinderspiel:

• Zwei Personen benennen abwechselnd Städte.

• Jede Stadt muss mit dem letzten Buchstaben der zuvor genannten beginnen.

• Wiederholungen sind verboten.

• Die erste Person, die keine Stadt mehr nennen kann, verliert.

Ein Mathematikerspiel:

• Zwei Personen markieren Knoten in einem gerichteten Graphen.

• Jeder Knoten muss ein Nachfolger des vorigen sein.

• Wiederholungen sind verboten.

• Die erste Person, die keinen Knoten markieren kann, verliert.

Entscheidungsproblem Geography:

Gegeben: Ein gerichteter Graph und ein Startknoten.
Frage: Hat die beginnende Person eine Gewinnstrategie für dieses Spiel?

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 11 Folie 24 von 27

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph


Geography ist PSpace-vollständig

Satz: Geography ist PSpace-vollständig.

Beweis: Nächste Vorlesung.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 11 Folie 25 von 27

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph


Geography ist PSpace-vollständig

Satz: Geography ist PSpace-vollständig.

Beweis: Nächste Vorlesung.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 11 Folie 25 von 27

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph


Und was ist mit Schach?

Schach selbst ist endlich:

• Es gibt nur endlich viele mögliche Stellungen.

• In jeder hat Weiß eine Gewinnstrategie oder nicht.

{ Problem in O(1).

Verallgemeinertes Schach:

• Beliebig großes Spielbrett

• Beliebig viele Figuren

{ ExpTime-vollständig (d.h. vermutlich nicht in PSpace).

Intuition: Schach ist schwerer als typische PSpace-Spiele, da man Züge rückgängig
machen kann.
{ Eine Partie kann mehr als polynomiell viele Züge dauern.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 11 Folie 26 von 27

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph


Und was ist mit Schach?

Schach selbst ist endlich:

• Es gibt nur endlich viele mögliche Stellungen.

• In jeder hat Weiß eine Gewinnstrategie oder nicht.

{ Problem in O(1).

Verallgemeinertes Schach:

• Beliebig großes Spielbrett

• Beliebig viele Figuren

{ ExpTime-vollständig (d.h. vermutlich nicht in PSpace).

Intuition: Schach ist schwerer als typische PSpace-Spiele, da man Züge rückgängig
machen kann.
{ Eine Partie kann mehr als polynomiell viele Züge dauern.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 11 Folie 26 von 27

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph


Und was ist mit Schach?

Schach selbst ist endlich:

• Es gibt nur endlich viele mögliche Stellungen.

• In jeder hat Weiß eine Gewinnstrategie oder nicht.

{ Problem in O(1).

Verallgemeinertes Schach:

• Beliebig großes Spielbrett

• Beliebig viele Figuren

{ ExpTime-vollständig (d.h. vermutlich nicht in PSpace).

Intuition: Schach ist schwerer als typische PSpace-Spiele, da man Züge rückgängig
machen kann.
{ Eine Partie kann mehr als polynomiell viele Züge dauern.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 11 Folie 26 von 27

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph


Und was ist mit Schach?

Schach selbst ist endlich:

• Es gibt nur endlich viele mögliche Stellungen.

• In jeder hat Weiß eine Gewinnstrategie oder nicht.

{ Problem in O(1).

Verallgemeinertes Schach:

• Beliebig großes Spielbrett

• Beliebig viele Figuren

{ ExpTime-vollständig (d.h. vermutlich nicht in PSpace).

Intuition: Schach ist schwerer als typische PSpace-Spiele, da man Züge rückgängig
machen kann.
{ Eine Partie kann mehr als polynomiell viele Züge dauern.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 11 Folie 26 von 27

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph


Zusammenfassung und Ausblick

Erreichbarkeit in gerichteten Graphen ist das typische NL-vollständige Problem.

Es gibt schwere Probleme, die keine leicht zu prüfende Lösung haben.

Quantifizierte Boolesche Formeln verallgemeinern Aussagenlogik.

PSpace ist die Klasse der interessanten Zwei-Personen-Spiele, die nicht zu lange dauern.

Was erwartet uns als nächstes?

• Alternierung

• Noch mehr Logik

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 11 Folie 27 von 27

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

