TECHNISCHE
@ UNIVERSITAT
DRESDEN

Fakultat Informatik, Institut fir Ktnstliche Intelligenz, Professur Computational Logic

THEORETISCHE INFORMATIK UND LOGIK

11. Vorlesung: NL und PSpace

Sebastian Rudolph

Folien: © Markus Krotzsch, https://iccl.inf. tu-dresden.de/web/TheolLog2017, CC BY 3.0 DE

TU Dresden, 19. Mai 2025


https://iccl.inf.tu-dresden.de/web/Computational_Logic
https://iccl.inf.tu-dresden.de/web/TheoLog2025
https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph
https://iccl.inf.tu-dresden.de/web/Markus_Kr%C3%B6tzsch

NP-vollstdndige Probleme

NP-vollstdndige Probleme
= Probleme, die mindestens so schwer sind wie alle anderen Probleme in NP
= die schwersten Probleme in NP.

Alles oder nichts:

Entweder sind alle NP-vollstédndigen Probleme in P,
oder kein einziges NP-vollstdndiges Problem ist in P.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 11

Folie 2 von 27


https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

NP-vollstdndige Probleme

NP-vollstdndige Probleme
= Probleme, die mindestens so schwer sind wie alle anderen Probleme in NP
= die schwersten Probleme in NP.

Alles oder nichts:
Entweder sind alle NP-vollstédndigen Probleme in P,
oder kein einziges NP-vollstdndiges Problem ist in P.

Ladner: ,Alle glauben P # NP. Dann gibt es aber auch beliebig viele Probleme in NP,
die nicht NP-vollstandig sind und dennoch nicht in P liegen.*

Anders gesagt: Neben den ,schwersten” Problemen in NP gibt es dann auch noch
viele ,mittelschwere®, welche dennoch nicht in P liegen. Bisher wissen wir nicht, welche
das sind.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 11 Folie 2 von 27


https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Leichte NP-vollstandige Probleme

Pseudopolynomielle Probleme sind polynomiell in der Gré3e von Eingabe und
gegebenen Zahlenbetragen.

Das macht sie in der Praxis oft eher einfach.

Beispiel: Das Rucksackproblem ist nur dann NP-vollstdndig, wenn die Gewichte der
Gegenstande Uber-polynomiell wachsen dirfen. Ein Problem mit so schweren Gegen-
standen ist aber nur dann interessant, wenn auch der Rucksack eine sehr groBe Ka-
pazitat hat. Alternativ kdnnte man mit sehr hoher Genauigkeit wiegen.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 11 Folie 3 von 27


https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

NL

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 11 Folie 4 von 27


https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Die Macht des Speichers

Selbst innerhalb kleiner Speichergrenzen ist sehr viel machbar:

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 11 Folie 5 von 27


https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Die Macht des Speichers

Selbst innerhalb kleiner Speichergrenzen ist sehr viel machbar:

® SAT ist mit linearem Speicher I6sbar:
Wir iterieren durch alle Wahrheitswertbelegungen (jeweils linear gro3) und testen
jeweils, ob die Formel erfillt ist (logarithmischer Speicher fiir ein paar Zeiger und
Zwischenergebnisse).

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 11 Folie 5 von 27


https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Die Macht des Speichers

Selbst innerhalb kleiner Speichergrenzen ist sehr viel machbar:
® SAT ist mit linearem Speicher I6sbar:
Wir iterieren durch alle Wahrheitswertbelegungen (jeweils linear gro3) und testen
jeweils, ob die Formel erfillt ist (logarithmischer Speicher fiir ein paar Zeiger und
Zwischenergebnisse).

® Linearer Speicher genlgt zur Erkennung kontextsensitiver Sprachen (durch linear
beschrankte Automaten, LBA).

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 11 Folie 5 von 27


https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Die Macht des Speichers

Selbst innerhalb kleiner Speichergrenzen ist sehr viel machbar:

® SAT ist mit linearem Speicher I6sbar:
Wir iterieren durch alle Wahrheitswertbelegungen (jeweils linear gro3) und testen
jeweils, ob die Formel erfillt ist (logarithmischer Speicher fiir ein paar Zeiger und
Zwischenergebnisse).

® Linearer Speicher genlgt zur Erkennung kontextsensitiver Sprachen (durch linear
beschrankte Automaten, LBA).

® Jedes NP-vollstédndige Problem ist in polynomiellem Speicher I6sbar:
Wir iterieren durch alle polynomiellen Zertifikate und simulieren einen
polynomiellen Verifikator auf ihnen.

~> Sehr kleine Speichergrenzen sind sinnvoll.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 11 Folie 5 von 27


https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Erinnerung: L

LogSpace (L): Sprachen, die man mit sehr wenig Arbeitsspeicher erkennen kann.

Wesentliche Datentypen:
® Zahler, Maximalwert polynomiell beschréankt
e Zeiger aufs (Nur-Lese-)Eingabeband

Jeweils fest deklariert, d.h. ihre Anzahl héngt nicht von der Eingabe ab.

Wesentliche Programmierfeatures:
* |nitialisiere Zeiger oder Z&hler auf festen Wert;
® inkrementiere/dekrementiere Zeiger oder Zahler;

e vergleiche Speicherinhalte von zwei Zeigern oder zwei Zahlern (und flhre je nach
Ergebnis anderen Code aus).

Optionales Ausgabeband: Jede Zelle ist einmalig beschreibbar und nicht (wieder) lesbar.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 11 Folie 6 von 27


https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

NLogSpace

Nichtdeterministische TM mit logarithmischem Speicher:
NL = NLogSpace = NSpace(log n)

Alternativ:
~Probleme, deren Lésung in L verifiziert werden kann.”

® Gleiche Programmierfeatures wie in L

® Aber nichtdeterministische Operationen mdglich,
z.B. ,setze Zeiger auf eine zuféllige Eingabeposition®

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 11 Folie 7 von 27


https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Beispiel: Erreichbarkeit

Das Problem der (s-t-)Erreichbarkeit in gerichteten Graphen lautet wie folgt:

Gegeben: Ein gerichteter Graph G mit Knoten s und r.
Frage: Gibt es in G einen gerichteten Pfad von s nach ¢?

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 11 Folie 8 von 27


https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Beispiel: Erreichbarkeit

Das Problem der (s-t-)Erreichbarkeit in gerichteten Graphen lautet wie folgt:

Gegeben: Ein gerichteter Graph G mit Knoten s und r.
Frage: Gibt es in G einen gerichteten Pfad von s nach ¢?

Satz: Erreichbarkeit in gerichteten Graphen liegt in NL.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 11 Folie 8 von 27


https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Beispiel: Erreichbarkeit

Das Problem der (s-t-)Erreichbarkeit in gerichteten Graphen lautet wie folgt:

Gegeben: Ein gerichteter Graph G mit Knoten s und r.
Frage: Gibt es in G einen gerichteten Pfad von s nach ¢?

Satz: Erreichbarkeit in gerichteten Graphen liegt in NL.

Beweis (Algorithmus):
* Wir verwenden einen Zeiger p auf einen Knoten (in der Eingabe) und einen Z&hler z.
® |nitialisiere «p = s und z = 1.
® Schleife:

— Falls #p = r dann akzeptiere;

— falls z = Anzahl der Knoten in G dann verwirf;

— andernfalls: Inkrementiere z und setze p auf einen Nachfolger des aktuellen
Knotens sp (nichtdeterministisch). O

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 11 Folie 8 von 27


https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

NL-Vollstandigkeit

Man kann NL-Schwere ahnlich wie fir NP definieren:
® An Stelle polynomieller Reduktionen verwendet man LogSpace-Reduktionen
® NL-schwer: jedes Problem in NL ist darauf logspace-reduzierbar
® NL-vollstandig: in NL und NL-schwer

Intuition: NL-vollstandige Probleme sind die schwersten in NL.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 11 Folie 9 von 27


https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

NL-Vollstandigkeit

Man kann NL-Schwere ahnlich wie fir NP definieren:
® An Stelle polynomieller Reduktionen verwendet man LogSpace-Reduktionen
® NL-schwer: jedes Problem in NL ist darauf logspace-reduzierbar
® NL-vollstandig: in NL und NL-schwer

Intuition: NL-vollstandige Probleme sind die schwersten in NL.

Beispiel: Erreichbarkeit in gerichteten Graphen ist NL-vollstandig.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 11 Folie 9 von 27


https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

NL-Vollstandigkeit

Man kann NL-Schwere ahnlich wie fir NP definieren:
® An Stelle polynomieller Reduktionen verwendet man LogSpace-Reduktionen
® NL-schwer: jedes Problem in NL ist darauf logspace-reduzierbar
® NL-vollstandig: in NL und NL-schwer

Intuition: NL-vollstandige Probleme sind die schwersten in NL.

Beispiel: Erreichbarkeit in gerichteten Graphen ist NL-vollstandig.

Beispiel: Erreichbarkeit in ungerichteten Graphen ist in NL aber (vermutlich) nicht
NL-schwer: Das Problem liegt in L (Omer Reingold, 2005).

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 11 Folie 9 von 27


https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Quiz: Erreichbarkeit

Quiz: Gegeben sei der ungerichtete Graph G = (V,E) mit ...

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 11 Folie 10 von 27


https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

L, NL und coNL

Riickblick: Der Satz von Savitch besagt, dass NPSpace = PSpace.
Daraus folgt auch NPSpace = coNPSpace.

"Notation: log® n = (log n)? # log (nz) =2logn.
Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 11 Folie 11 von 27


https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

L, NL und coNL

Daraus folgt auch NPSpace = coNPSpace.

Riickblick: Der Satz von Savitch besagt, dass NPSpace = PSpace.

Fiir logarithmischen Speicher ergibt Savitchs Ergebnis aber lediglich:’
NL DSpace(log2 n)

~> Daraus folgt nicht NL C L!

"Notation: log® n = (log n)? # log (n2) =2logn.
Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 11

Folie 11 von 27



https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

L, NL und coNL

Riickblick: Der Satz von Savitch besagt, dass NPSpace = PSpace.
Daraus folgt auch NPSpace = coNPSpace.

Fiir logarithmischen Speicher ergibt Savitchs Ergebnis aber lediglich:’
NL DSpace(log2 n)
~> Daraus folgt nicht NL C L!

Man weil3 dennoch:

Satz (Immerman 1987, Szelepcsényi 1987): NL = coNL.

"Notation: log® n = (log n)? # log (n2) =2logn.
Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 11 Folie 11 von 27


https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

L, NL und coNL

Riickblick: Der Satz von Savitch besagt, dass NPSpace = PSpace.
Daraus folgt auch NPSpace = coNPSpace.

Fiir logarithmischen Speicher ergibt Savitchs Ergebnis aber lediglich:’
NL DSpace(log2 n)
~> Daraus folgt nicht NL C L!

Man weil3 dennoch:

Satz (Immerman 1987, Szelepcsényi 1987): NL = coNL.

Beispiel: Nichterreichbarkeit in gerichteten Graphen kann in NL entschieden werden.
Betrachtet man den NL-Algorithmus fiir Erreichbarkeit, dann ist das zunachst tberra-
schend ...

(Eng verwandtes Resultat: Kontextsensitive Sprachen sind unter Komplement abgeschlossen.)

"Notation: log® n = (log n)? # log (n2) =2logn.
Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 11 Folie 11 von 27


https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

PSpace

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 11 Folie 12 von 27


https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Noch schwerere Probleme?

Beobachtung: Bisher waren alle entscheidbaren schweren Probleme der Vorlesung
auch in NP, d.h. ihre Lésung war leicht verifizierbar:

e Erfullbarkeit, Hamiltonpfad, Clique, Rucksack: NP-vollstandige Probleme mit
polynomiellen Verifikatoren

® Faktorisierung: in NP N coNP
® Erreichbarkeit in Graphen: in NP (Zertifikat ist Pfad); sogar in P (z.B. Breitensuche)
Gibt es Uberhaupt noch schwerere entscheidbare Probleme?

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 11 Folie 13 von 27


https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Beispiel: Schachratsel

- N W AR N

a b ¢ d e f g h
Matt in drei Zlgen; Weil3 ist am Zug

(Samuel Loyd, 1903)

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 11 Folie 14 von 27


https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Beispiel: Schachratsel

/m/, %//&%
\

%/%/,
%%//,

33333333

_
a b ¢ d e f g h

Matt in 262 Zigen; Weil3 ist am Zug



https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Rackblick: Aussagenlogik

Riickblick: Aussagenlogik

® Aussagenlogische Formeln basieren auf Atomen (Propositionen, Variablen).

® Atome werden mit Junktoren verknlpft: =, A, Vv, —.
(Wir setzen immer Klammern zwischen verschiedene binare Junktoren.)

e Wir erlauben auBerdem die nullstelligen Operatoren T (wahr) und L (falsch).
® Belegungen ordnen Atomen Wahrheitswerte 1 oder 0 zu.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 11 Folie 16 von 27


https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Rackblick: Aussagenlogik

Riickblick: Aussagenlogik

® Aussagenlogische Formeln basieren auf Atomen (Propositionen, Variablen).

® Atome werden mit Junktoren verknUpft: —, A, Vv, —.
(Wir setzen immer Klammern zwischen verschiedene binare Junktoren.)

® Wir erlauben auBerdem die nullstelligen Operatoren T (wahr) und L (falsch).
® Belegungen ordnen Atomen Wahrheitswerte 1 oder 0 zu.

® SAT: Gegeben eine aussagenlogische Formel ¢, existiert eine Belegung der
Atome in ¢, fir die ¢ wahr wird?

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 11 Folie 16 von 27


https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Rackblick: Aussagenlogik

Riickblick: Aussagenlogik
® Aussagenlogische Formeln basieren auf Atomen (Propositionen, Variablen).

® Atome werden mit Junktoren verknilpft: =, A, V, —.
(Wir setzen immer Klammern zwischen verschiedene binare Junktoren.)

® Wir erlauben auBerdem die nullstelligen Operatoren T (wahr) und L (falsch).
® Belegungen ordnen Atomen Wahrheitswerte 1 oder 0 zu.

® SAT: Gegeben eine aussagenlogische Formel ¢, existiert eine Belegung der
Atome in ¢, fir die ¢ wahr wird?

* Tautologie: Gegeben eine aussagenlogische Formel ¢, wird ¢ fiir alle Belegungen
der Atome in ¢ wahr?

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 11 Folie 16 von 27


https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Rackblick: Aussagenlogik

Riickblick: Aussagenlogik
® Aussagenlogische Formeln basieren auf Atomen (Propositionen, Variablen).

® Atome werden mit Junktoren verknilpft: =, A, V, —.
(Wir setzen immer Klammern zwischen verschiedene binare Junktoren.)

® Wir erlauben auBerdem die nullstelligen Operatoren T (wahr) und L (falsch).
® Belegungen ordnen Atomen Wahrheitswerte 1 oder 0 zu.

® SAT: Gegeben eine aussagenlogische Formel ¢, existiert eine Belegung der
Atome in ¢, fir die ¢ wahr wird?

* Tautologie: Gegeben eine aussagenlogische Formel ¢, wird ¢ fiir alle Belegungen
der Atome in ¢ wahr?

~> (Implizite) existenzielle und universelle Quantoren tUber Wahrheitswerten.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 11 Folie 16 von 27


https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Ein Problem in PSpace

Ein Beispiel fir ein erstes typisches PSpace-Problem ergibt sich, wenn man SAT und
Tautologie verallgemeinert:

Eine Quantifizierte Boolesche Formel (QBF) ist eine logische Formel der folgenden

Form:
O1p1.Oopa. -+ - Ope.Flpi, ..., pel

mit i > 0, O; € {4, Y} Quantoren, p; aussagenlogischen Atomen (Variablen) und F einer
aussagenlogischen Formel mit Atomen py, ..., p;.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 11 Folie 17 von 27


https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Ein Problem in PSpace

Ein Beispiel fir ein erstes typisches PSpace-Problem ergibt sich, wenn man SAT und
Tautologie verallgemeinert:

Eine Quantifizierte Boolesche Formel (QBF) ist eine logische Formel der folgenden

Form:
O1p1.Oopa. -+ - Ope.Flpi, ..., pel

mit i > 0, O; € {4, Y} Quantoren, p; aussagenlogischen Atomen (Variablen) und F einer
aussagenlogischen Formel mit Atomen py, ..., p;.

Beispiele:
® VYpdq.(p — @) A (g — p)
® Vpi,p2,p3.4q.(p1 Vp2 Vp3) = (p1 V@) A(=q V pa V p3))

Anmerkung: Wir sparen uns die auBerste Klammer sowie Klammern in Ketten von A und Vv, und fassen gleiche Quantoren zusammen.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 11 Folie 17 von 27


https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Semantik von QBF

Jeder QBF-Formel Q wird ein eindeutiger Wahrheitswert W(Q) zugeordnet:

® QBF-Formeln ohne Atome (d.h. nur mit T und L) werden wie aussagenlogische
Formeln evaluiert.

® W(@p.Flp)) = 1 falls W(F[p/T]) = 1 oder W(F[p/L]) = 1;
o W(¥p.Flp)) =1 falls W(F[p/T]) =1 und W(F[p/L]) = 1.
Dabei heiBt ¢[p/T]: ,¢ mit p ersetzt durch T*; analog fir L.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 11 Folie 18 von 27


https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Semantik von QBF

Formeln evaluiert.

* W@p.Flp)) = 1 falls W(F[p/T]) = 1 oder W(F[p/L1]) = 1;

* W(¥p.Flp]) = 1 falls W(F[p/T]) = 1 und W(F[p/L]) = 1.
Dabei heiBt ¢[p/T]: ,¢ mit p ersetzt durch T*; analog fir L.

Jeder QBF-Formel Q wird ein eindeutiger Wahrheitswert W(Q) zugeordnet:

® QBF-Formeln ohne Atome (d.h. nur mit T und L) werden wie aussagenlogische

Beispiel:
WMp.dq.(p > @) A(g—p) =1

gdw. W(3q.(T > ¢)A(g > T))=1und
WEg.(L—->g)A(g— L)=1

gdw. W(T = T)A(T — T))=1oder W(T = L)A(L—>T))=1 und
WL —> T)A(T > L)) =1oder W(L—> L)A(L—> L) =1

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 11

Folie 18 von 27



https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Wahre QBF erkennen

Durch die Quantoren steht der Wahrheitswert jeder QBF fest, d.h. er hangt nicht von
Belegungen ab.

Das Problem TrueQBF ist wie folgt

Gegeben: Eine QBF Q.
Frage: Ist W(Q) = 1?

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 11 Folie 19 von 27


https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Wahre QBF erkennen

Durch die Quantoren steht der Wahrheitswert jeder QBF fest, d.h. er hangt nicht von
Belegungen ab.

Das Problem TrueQBF ist wie folgt

Gegeben: Eine QBF Q.
Frage: Ist W(Q) = 1?

Beispiel: SAT lasst sich auf TrueQBF reduzieren, indem man jedes Atom der gege-
benen aussagenlogischen Formel existenziell quantifiziert.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 11 Folie 19 von 27


https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Wahre QBF erkennen

Durch die Quantoren steht der Wahrheitswert jeder QBF fest, d.h. er hangt nicht von
Belegungen ab.

Das Problem TrueQBF ist wie folgt

Gegeben: Eine QBF Q.
Frage: Ist W(Q) = 1?

Beispiel: SAT lasst sich auf TrueQBF reduzieren, indem man jedes Atom der gege-
benen aussagenlogischen Formel existenziell quantifiziert.

Beispiel: Tautologie ldsst sich auf TrueQBF reduzieren, indem man jedes Atom der
gegebenen aussagenlogischen Formel universell quantifiziert.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 11 Folie 19 von 27


https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Quiz: TrueQBF

Jeder QBF-Formel Q wird ein eindeutiger Wahrheitswert W(Q) zugeordnet:
® QBF-Formeln ohne Atome (d.h. nur mit T und L) werden wie aussagenlogische Formeln evaluiert.
* W(3@p.Flp]) = 1 falls W(F[p/T]) = 1 oder W(F[p/L]) = 1;
* W(Vp.Flp]) = 1 falls W(F[p/T]) =1 und W(F[p/1]) = 1.
Dabei heit ¢[p/TI: . mit p ersetzt durch T analog fur L.

Quiz: Welche der folgenden Quantifizierten Booleschen Formeln sind wahr? . ..

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 11 Folie 20 von 27


https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

TrueQBF in polynomiellem Speicher

Satz: TrueQBF ist in PSpace.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 11 Folie 21 von 27


https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

TrueQBF in polynomiellem Speicher

Satz: TrueQBF ist in PSpace.

Beweis: Durch Angabe eines (Pseudo-)Algorithmus:

01 function TRUEQBF (F) {

02 1if F ,hat keine Quantoren® {

03 return , Aussagenlogische Auswertung von F“;

04 }elseif F=dp.G {

05 return (TrRueQBF (G[p/T]) OR TRUEQBF(G[p/L]));

06 }elseif F=VYp.G{

07 return (TrRueQBF (G[p/T]) AND TrueQBF(G[p/L])); } }

e Evaluation in Zeile 83 ist mdglich in PSpace.

® Rekursionen in Zeilen 05 und 87 kénnen der Reihe nach abgearbeitet werden,
wobei Speicher wiederverwendet wird.

® Jeder Rekursionsschritt benétigt polynomiellen Speicher.
* Maximale Rekursionstiefe ist die Anzahl der Atome (also linear in der Eingabe). O

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 11 Folie 21 von 27


https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

PSpace-Schwere

Ein Problem Q ist genau dann PSpace-schwer, wenn flr jedes Problem P in PSpace
eine polynomielle Reduktion P <, Q existiert. Q ist genau dann PSpace-vollstandig,
wenn es PSpace-schwer ist und in PSpace liegt.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 11 Folie 22 von 27


https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

PSpace-Schwere

Ein Problem Q ist genau dann PSpace-schwer, wenn flr jedes Problem P in PSpace
eine polynomielle Reduktion P <, Q existiert. Q ist genau dann PSpace-vollstandig,
wenn es PSpace-schwer ist und in PSpace liegt.

Satz: TrueQBF ist PSpace-schwer.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 11 Folie 22 von 27


https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

PSpace-Schwere

Ein Problem Q ist genau dann PSpace-schwer, wenn flr jedes Problem P in PSpace
eine polynomielle Reduktion P <, Q existiert. Q ist genau dann PSpace-vollstandig,
wenn es PSpace-schwer ist und in PSpace liegt.

Satz: TrueQBF ist PSpace-schwer.

Beweisidee: Nachste Vorlesung.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 11 Folie 22 von 27


https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

QBF als Spiel

Man kann TrueQBF als Spiel auffassen:
® Das ,Spielbrett” ist eine QBF.
e Zwei Personen, Anton und Emilia, wahlen der Reihe nach Wahrheitswerte.

Steht ¥p vorn, so darf Anton einen Wert fir p wahlen und den Quantor I6schen.

Steht dp vorn, so darf Emilia einen Wert fir p wahlen und den Quantor I6schen.

Emilia gewinnt, wenn die Formel nach Entfernen aller Quantoren wahr wird;

andernfalls gewinnt Anton.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 11 Folie 23 von 27


https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

QBF als Spiel

Man kann TrueQBF als Spiel auffassen:
® Das ,Spielbrett” ist eine QBF.
e Zwei Personen, Anton und Emilia, wahlen der Reihe nach Wahrheitswerte.

Steht ¥p vorn, so darf Anton einen Wert fir p wahlen und den Quantor I6schen.

Steht dp vorn, so darf Emilia einen Wert fir p wahlen und den Quantor I6schen.

Emilia gewinnt, wenn die Formel nach Entfernen aller Quantoren wahr wird;

andernfalls gewinnt Anton.

Beobachtung: Emilia hat genau dann eine Gewinnstrategie im Formelspiel, wenn die
gegebene QBF wahr ist.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 11 Folie 23 von 27


https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Beispiel: Sipsers Geography

Ein Kinderspiel:
e Zwei Personen benennen abwechselnd Stadte.
® Jede Stadt muss mit dem letzten Buchstaben der zuvor genannten beginnen.
® Wiederholungen sind verboten.
® Die erste Person, die keine Stadt mehr nennen kann, verliert.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 11 Folie 24 von 27


https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Beispiel: Sipsers Geography

Ein Kinderspiel:
e Zwei Personen benennen abwechselnd Stadte.
® Jede Stadt muss mit dem letzten Buchstaben der zuvor genannten beginnen.
® Wiederholungen sind verboten.
® Die erste Person, die keine Stadt mehr nennen kann, verliert.

Ein Mathematikerspiel:
e Zwei Personen markieren Knoten in einem gerichteten Graphen.

® Jeder Knoten muss ein Nachfolger des vorigen sein.

Wiederholungen sind verboten.

Die erste Person, die keinen Knoten markieren kann, verliert.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 11 Folie 24 von 27


https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Beispiel: Sipsers Geography

Ein Kinderspiel:
e Zwei Personen benennen abwechselnd Stadte.
® Jede Stadt muss mit dem letzten Buchstaben der zuvor genannten beginnen.
® Wiederholungen sind verboten.
® Die erste Person, die keine Stadt mehr nennen kann, verliert.

Ein Mathematikerspiel:
e Zwei Personen markieren Knoten in einem gerichteten Graphen.
® Jeder Knoten muss ein Nachfolger des vorigen sein.
® Wiederholungen sind verboten.
* Die erste Person, die keinen Knoten markieren kann, verliert.

Entscheidungsproblem Geography:

Gegeben: Ein gerichteter Graph und ein Startknoten.
Frage: Hat die beginnende Person eine Gewinnstrategie fur dieses Spiel?

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 11 Folie 24 von 27


https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Geography ist PSpace-vollstandig

Satz: Geography ist PSpace-vollstandig.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 11 Folie 25 von 27


https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Geography ist PSpace-vollstandig

Satz: Geography ist PSpace-vollstandig.

Beweis: N&chste Vorlesung.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 11 Folie 25 von 27


https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Und was ist mit Schach?

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 11 Folie 26 von 27


https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Und was ist mit Schach?

Schach selbst ist endlich:

® Es gibt nur endlich viele mégliche Stellungen.

® |n jeder hat Weil3 eine Gewinnstrategie oder nicht.
~> Problem in O(1).

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 11

Folie 26 von 27


https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Und was ist mit Schach?

Schach selbst ist endlich:

® Es gibt nur endlich viele mégliche Stellungen.

® |n jeder hat Weil3 eine Gewinnstrategie oder nicht.
~> Problem in O(1).

Verallgemeinertes Schach:
* Beliebig groBes Spielbrett
® Beliebig viele Figuren

~> ExpTime-vollstandig (d.h. vermutlich nicht in PSpace).

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 11

Folie 26 von 27


https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Und was ist mit Schach?

Schach selbst ist endlich:

® Es gibt nur endlich viele mégliche Stellungen.

® |n jeder hat Weil3 eine Gewinnstrategie oder nicht.
~> Problem in O(1).

Verallgemeinertes Schach:
* Beliebig groBes Spielbrett
® Beliebig viele Figuren
~> ExpTime-vollstandig (d.h. vermutlich nicht in PSpace).

Intuition: Schach ist schwerer als typische PSpace-Spiele, da man Zuge riickgangig

machen kann.
~» Eine Partie kann mehr als polynomiell viele Zuge dauern.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 11 Folie 26 von 27


https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Zusammenfassung und Ausblick

Erreichbarkeit in gerichteten Graphen ist das typische NL-vollstandige Problem.
Es gibt schwere Probleme, die keine leicht zu prifende Lésung haben.
Quantifizierte Boolesche Formeln verallgemeinern Aussagenlogik.

PSpace ist die Klasse der interessanten Zwei-Personen-Spiele, die nicht zu lange dauern.

Was erwartet uns als nachstes?

e Alternierung

® Noch mehr Logik

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 11 Folie 27 von 27


https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

