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NP-vollstdndige Probleme

NP-vollstdndige Probleme
= Probleme, die mindestens so schwer sind wie alle anderen Probleme in NP
= die schwersten Probleme in NP.

Alles oder nichts:

Entweder sind alle NP-vollstédndigen Probleme in P,
oder kein einziges NP-vollstdndiges Problem ist in P.
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NP-vollstdndige Probleme

NP-vollstdndige Probleme
= Probleme, die mindestens so schwer sind wie alle anderen Probleme in NP
= die schwersten Probleme in NP.

Alles oder nichts:
Entweder sind alle NP-vollstédndigen Probleme in P,
oder kein einziges NP-vollstdndiges Problem ist in P.

Ladner: ,Alle glauben P # NP. Dann gibt es aber auch beliebig viele Probleme in NP,
die nicht NP-vollstandig sind und dennoch nicht in P liegen.*

Anders gesagt: Neben den ,schwersten” Problemen in NP gibt es dann auch noch
viele ,mittelschwere®, welche dennoch nicht in P liegen. Bisher wissen wir nicht, welche
das sind.
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Leichte NP-vollstandige Probleme

Pseudopolynomielle Probleme sind polynomiell in der Gré3e von Eingabe und
gegebenen Zahlenbetragen.

Das macht sie in der Praxis oft eher einfach.

Beispiel: Das Rucksackproblem ist nur dann NP-vollstdndig, wenn die Gewichte der
Gegenstande Uber-polynomiell wachsen dirfen. Ein Problem mit so schweren Gegen-
standen ist aber nur dann interessant, wenn auch der Rucksack eine sehr groBe Ka-
pazitat hat. Alternativ kdnnte man mit sehr hoher Genauigkeit wiegen.
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NL
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Die Macht des Speichers

Selbst innerhalb kleiner Speichergrenzen ist sehr viel machbar:
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Die Macht des Speichers

Selbst innerhalb kleiner Speichergrenzen ist sehr viel machbar:

® SAT ist mit linearem Speicher I6sbar:
Wir iterieren durch alle Wahrheitswertbelegungen (jeweils linear gro3) und testen
jeweils, ob die Formel erfillt ist (logarithmischer Speicher fiir ein paar Zeiger und
Zwischenergebnisse).
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Die Macht des Speichers

Selbst innerhalb kleiner Speichergrenzen ist sehr viel machbar:
® SAT ist mit linearem Speicher I6sbar:
Wir iterieren durch alle Wahrheitswertbelegungen (jeweils linear gro3) und testen
jeweils, ob die Formel erfillt ist (logarithmischer Speicher fiir ein paar Zeiger und
Zwischenergebnisse).

® Linearer Speicher genlgt zur Erkennung kontextsensitiver Sprachen (durch linear
beschrankte Automaten, LBA).
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Die Macht des Speichers

Selbst innerhalb kleiner Speichergrenzen ist sehr viel machbar:

® SAT ist mit linearem Speicher I6sbar:
Wir iterieren durch alle Wahrheitswertbelegungen (jeweils linear gro3) und testen
jeweils, ob die Formel erfillt ist (logarithmischer Speicher fiir ein paar Zeiger und
Zwischenergebnisse).

® Linearer Speicher genlgt zur Erkennung kontextsensitiver Sprachen (durch linear
beschrankte Automaten, LBA).

® Jedes NP-vollstédndige Problem ist in polynomiellem Speicher I6sbar:
Wir iterieren durch alle polynomiellen Zertifikate und simulieren einen
polynomiellen Verifikator auf ihnen.

~> Sehr kleine Speichergrenzen sind sinnvoll.
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Erinnerung: L

LogSpace (L): Sprachen, die man mit sehr wenig Arbeitsspeicher erkennen kann.

Wesentliche Datentypen:
® Zahler, Maximalwert polynomiell beschréankt
e Zeiger aufs (Nur-Lese-)Eingabeband

Jeweils fest deklariert, d.h. ihre Anzahl héngt nicht von der Eingabe ab.

Wesentliche Programmierfeatures:
* |nitialisiere Zeiger oder Z&hler auf festen Wert;
® inkrementiere/dekrementiere Zeiger oder Zahler;

e vergleiche Speicherinhalte von zwei Zeigern oder zwei Zahlern (und flhre je nach
Ergebnis anderen Code aus).

Optionales Ausgabeband: Jede Zelle ist einmalig beschreibbar und nicht (wieder) lesbar.
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NLogSpace

Nichtdeterministische TM mit logarithmischem Speicher:
NL = NLogSpace = NSpace(log n)

Alternativ:
~Probleme, deren Lésung in L verifiziert werden kann.”

® Gleiche Programmierfeatures wie in L

® Aber nichtdeterministische Operationen mdglich,
z.B. ,setze Zeiger auf eine zuféllige Eingabeposition®
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Beispiel: Erreichbarkeit

Das Problem der (s-t-)Erreichbarkeit in gerichteten Graphen lautet wie folgt:

Gegeben: Ein gerichteter Graph G mit Knoten s und r.
Frage: Gibt es in G einen gerichteten Pfad von s nach ¢?
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Beispiel: Erreichbarkeit

Das Problem der (s-t-)Erreichbarkeit in gerichteten Graphen lautet wie folgt:

Gegeben: Ein gerichteter Graph G mit Knoten s und r.
Frage: Gibt es in G einen gerichteten Pfad von s nach ¢?

Satz: Erreichbarkeit in gerichteten Graphen liegt in NL.
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Beispiel: Erreichbarkeit

Das Problem der (s-t-)Erreichbarkeit in gerichteten Graphen lautet wie folgt:

Gegeben: Ein gerichteter Graph G mit Knoten s und r.
Frage: Gibt es in G einen gerichteten Pfad von s nach ¢?

Satz: Erreichbarkeit in gerichteten Graphen liegt in NL.

Beweis (Algorithmus):
* Wir verwenden einen Zeiger p auf einen Knoten (in der Eingabe) und einen Z&hler z.
® |nitialisiere «p = s und z = 1.
® Schleife:

— Falls #p = r dann akzeptiere;

— falls z = Anzahl der Knoten in G dann verwirf;

— andernfalls: Inkrementiere z und setze p auf einen Nachfolger des aktuellen
Knotens sp (nichtdeterministisch). O
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NL-Vollstandigkeit

Man kann NL-Schwere ahnlich wie fir NP definieren:
® An Stelle polynomieller Reduktionen verwendet man LogSpace-Reduktionen
® NL-schwer: jedes Problem in NL ist darauf logspace-reduzierbar
® NL-vollstandig: in NL und NL-schwer

Intuition: NL-vollstandige Probleme sind die schwersten in NL.
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NL-Vollstandigkeit

Man kann NL-Schwere ahnlich wie fir NP definieren:
® An Stelle polynomieller Reduktionen verwendet man LogSpace-Reduktionen
® NL-schwer: jedes Problem in NL ist darauf logspace-reduzierbar
® NL-vollstandig: in NL und NL-schwer

Intuition: NL-vollstandige Probleme sind die schwersten in NL.

Beispiel: Erreichbarkeit in gerichteten Graphen ist NL-vollstandig.
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NL-Vollstandigkeit

Man kann NL-Schwere ahnlich wie fir NP definieren:
® An Stelle polynomieller Reduktionen verwendet man LogSpace-Reduktionen
® NL-schwer: jedes Problem in NL ist darauf logspace-reduzierbar
® NL-vollstandig: in NL und NL-schwer

Intuition: NL-vollstandige Probleme sind die schwersten in NL.

Beispiel: Erreichbarkeit in gerichteten Graphen ist NL-vollstandig.

Beispiel: Erreichbarkeit in ungerichteten Graphen ist in NL aber (vermutlich) nicht
NL-schwer: Das Problem liegt in L (Omer Reingold, 2005).
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Quiz: Erreichbarkeit

Quiz: Gegeben sei der ungerichtete Graph G = (V,E) mit ...
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L, NL und coNL

Riickblick: Der Satz von Savitch besagt, dass NPSpace = PSpace.
Daraus folgt auch NPSpace = coNPSpace.

"Notation: log® n = (log n)? # log (nz) =2logn.
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L, NL und coNL

Daraus folgt auch NPSpace = coNPSpace.

Riickblick: Der Satz von Savitch besagt, dass NPSpace = PSpace.

Fiir logarithmischen Speicher ergibt Savitchs Ergebnis aber lediglich:’
NL DSpace(log2 n)

~> Daraus folgt nicht NL C L!

"Notation: log® n = (log n)? # log (n2) =2logn.
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L, NL und coNL

Riickblick: Der Satz von Savitch besagt, dass NPSpace = PSpace.
Daraus folgt auch NPSpace = coNPSpace.

Fiir logarithmischen Speicher ergibt Savitchs Ergebnis aber lediglich:’
NL DSpace(log2 n)
~> Daraus folgt nicht NL C L!

Man weil3 dennoch:

Satz (Immerman 1987, Szelepcsényi 1987): NL = coNL.

"Notation: log® n = (log n)? # log (n2) =2logn.
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L, NL und coNL

Riickblick: Der Satz von Savitch besagt, dass NPSpace = PSpace.
Daraus folgt auch NPSpace = coNPSpace.

Fiir logarithmischen Speicher ergibt Savitchs Ergebnis aber lediglich:’
NL DSpace(log2 n)
~> Daraus folgt nicht NL C L!

Man weil3 dennoch:

Satz (Immerman 1987, Szelepcsényi 1987): NL = coNL.

Beispiel: Nichterreichbarkeit in gerichteten Graphen kann in NL entschieden werden.
Betrachtet man den NL-Algorithmus fiir Erreichbarkeit, dann ist das zunachst tberra-
schend ...

(Eng verwandtes Resultat: Kontextsensitive Sprachen sind unter Komplement abgeschlossen.)

"Notation: log® n = (log n)? # log (n2) =2logn.
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PSpace
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Noch schwerere Probleme?

Beobachtung: Bisher waren alle entscheidbaren schweren Probleme der Vorlesung
auch in NP, d.h. ihre Lésung war leicht verifizierbar:

e Erfullbarkeit, Hamiltonpfad, Clique, Rucksack: NP-vollstandige Probleme mit
polynomiellen Verifikatoren

® Faktorisierung: in NP N coNP
® Erreichbarkeit in Graphen: in NP (Zertifikat ist Pfad); sogar in P (z.B. Breitensuche)
Gibt es Uberhaupt noch schwerere entscheidbare Probleme?
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Beispiel: Schachratsel

- N W AR N

a b ¢ d e f g h
Matt in drei Zlgen; Weil3 ist am Zug

(Samuel Loyd, 1903)

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 11 Folie 14 von 27


https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Beispiel: Schachratsel
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Rackblick: Aussagenlogik

Riickblick: Aussagenlogik

® Aussagenlogische Formeln basieren auf Atomen (Propositionen, Variablen).

® Atome werden mit Junktoren verknlpft: =, A, Vv, —.
(Wir setzen immer Klammern zwischen verschiedene binare Junktoren.)

e Wir erlauben auBerdem die nullstelligen Operatoren T (wahr) und L (falsch).
® Belegungen ordnen Atomen Wahrheitswerte 1 oder 0 zu.
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Rackblick: Aussagenlogik

Riickblick: Aussagenlogik

® Aussagenlogische Formeln basieren auf Atomen (Propositionen, Variablen).

® Atome werden mit Junktoren verknUpft: —, A, Vv, —.
(Wir setzen immer Klammern zwischen verschiedene binare Junktoren.)

® Wir erlauben auBerdem die nullstelligen Operatoren T (wahr) und L (falsch).
® Belegungen ordnen Atomen Wahrheitswerte 1 oder 0 zu.

® SAT: Gegeben eine aussagenlogische Formel ¢, existiert eine Belegung der
Atome in ¢, fir die ¢ wahr wird?
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Rackblick: Aussagenlogik

Riickblick: Aussagenlogik
® Aussagenlogische Formeln basieren auf Atomen (Propositionen, Variablen).

® Atome werden mit Junktoren verknilpft: =, A, V, —.
(Wir setzen immer Klammern zwischen verschiedene binare Junktoren.)

® Wir erlauben auBerdem die nullstelligen Operatoren T (wahr) und L (falsch).
® Belegungen ordnen Atomen Wahrheitswerte 1 oder 0 zu.

® SAT: Gegeben eine aussagenlogische Formel ¢, existiert eine Belegung der
Atome in ¢, fir die ¢ wahr wird?

* Tautologie: Gegeben eine aussagenlogische Formel ¢, wird ¢ fiir alle Belegungen
der Atome in ¢ wahr?
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Rackblick: Aussagenlogik

Riickblick: Aussagenlogik
® Aussagenlogische Formeln basieren auf Atomen (Propositionen, Variablen).

® Atome werden mit Junktoren verknilpft: =, A, V, —.
(Wir setzen immer Klammern zwischen verschiedene binare Junktoren.)

® Wir erlauben auBerdem die nullstelligen Operatoren T (wahr) und L (falsch).
® Belegungen ordnen Atomen Wahrheitswerte 1 oder 0 zu.

® SAT: Gegeben eine aussagenlogische Formel ¢, existiert eine Belegung der
Atome in ¢, fir die ¢ wahr wird?

* Tautologie: Gegeben eine aussagenlogische Formel ¢, wird ¢ fiir alle Belegungen
der Atome in ¢ wahr?

~> (Implizite) existenzielle und universelle Quantoren tUber Wahrheitswerten.
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Ein Problem in PSpace

Ein Beispiel fir ein erstes typisches PSpace-Problem ergibt sich, wenn man SAT und
Tautologie verallgemeinert:

Eine Quantifizierte Boolesche Formel (QBF) ist eine logische Formel der folgenden

Form:
O1p1.Oopa. -+ - Ope.Flpi, ..., pel

mit i > 0, O; € {4, Y} Quantoren, p; aussagenlogischen Atomen (Variablen) und F einer
aussagenlogischen Formel mit Atomen py, ..., p;.
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Ein Problem in PSpace

Ein Beispiel fir ein erstes typisches PSpace-Problem ergibt sich, wenn man SAT und
Tautologie verallgemeinert:

Eine Quantifizierte Boolesche Formel (QBF) ist eine logische Formel der folgenden

Form:
O1p1.Oopa. -+ - Ope.Flpi, ..., pel

mit i > 0, O; € {4, Y} Quantoren, p; aussagenlogischen Atomen (Variablen) und F einer
aussagenlogischen Formel mit Atomen py, ..., p;.

Beispiele:
® VYpdq.(p — @) A (g — p)
® Vpi,p2,p3.4q.(p1 Vp2 Vp3) = (p1 V@) A(=q V pa V p3))

Anmerkung: Wir sparen uns die auBerste Klammer sowie Klammern in Ketten von A und Vv, und fassen gleiche Quantoren zusammen.
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Semantik von QBF

Jeder QBF-Formel Q wird ein eindeutiger Wahrheitswert W(Q) zugeordnet:

® QBF-Formeln ohne Atome (d.h. nur mit T und L) werden wie aussagenlogische
Formeln evaluiert.

® W(@p.Flp)) = 1 falls W(F[p/T]) = 1 oder W(F[p/L]) = 1;
o W(¥p.Flp)) =1 falls W(F[p/T]) =1 und W(F[p/L]) = 1.
Dabei heiBt ¢[p/T]: ,¢ mit p ersetzt durch T*; analog fir L.
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Semantik von QBF

Formeln evaluiert.

* W@p.Flp)) = 1 falls W(F[p/T]) = 1 oder W(F[p/L1]) = 1;

* W(¥p.Flp]) = 1 falls W(F[p/T]) = 1 und W(F[p/L]) = 1.
Dabei heiBt ¢[p/T]: ,¢ mit p ersetzt durch T*; analog fir L.

Jeder QBF-Formel Q wird ein eindeutiger Wahrheitswert W(Q) zugeordnet:

® QBF-Formeln ohne Atome (d.h. nur mit T und L) werden wie aussagenlogische

Beispiel:
WMp.dq.(p > @) A(g—p) =1

gdw. W(3q.(T > ¢)A(g > T))=1und
WEg.(L—->g)A(g— L)=1

gdw. W(T = T)A(T — T))=1oder W(T = L)A(L—>T))=1 und
WL —> T)A(T > L)) =1oder W(L—> L)A(L—> L) =1
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Wahre QBF erkennen

Durch die Quantoren steht der Wahrheitswert jeder QBF fest, d.h. er hangt nicht von
Belegungen ab.

Das Problem TrueQBF ist wie folgt

Gegeben: Eine QBF Q.
Frage: Ist W(Q) = 1?
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Wahre QBF erkennen

Durch die Quantoren steht der Wahrheitswert jeder QBF fest, d.h. er hangt nicht von
Belegungen ab.

Das Problem TrueQBF ist wie folgt

Gegeben: Eine QBF Q.
Frage: Ist W(Q) = 1?

Beispiel: SAT lasst sich auf TrueQBF reduzieren, indem man jedes Atom der gege-
benen aussagenlogischen Formel existenziell quantifiziert.
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Wahre QBF erkennen

Durch die Quantoren steht der Wahrheitswert jeder QBF fest, d.h. er hangt nicht von
Belegungen ab.

Das Problem TrueQBF ist wie folgt

Gegeben: Eine QBF Q.
Frage: Ist W(Q) = 1?

Beispiel: SAT lasst sich auf TrueQBF reduzieren, indem man jedes Atom der gege-
benen aussagenlogischen Formel existenziell quantifiziert.

Beispiel: Tautologie ldsst sich auf TrueQBF reduzieren, indem man jedes Atom der
gegebenen aussagenlogischen Formel universell quantifiziert.
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Quiz: TrueQBF

Jeder QBF-Formel Q wird ein eindeutiger Wahrheitswert W(Q) zugeordnet:
® QBF-Formeln ohne Atome (d.h. nur mit T und L) werden wie aussagenlogische Formeln evaluiert.
* W(3@p.Flp]) = 1 falls W(F[p/T]) = 1 oder W(F[p/L]) = 1;
* W(Vp.Flp]) = 1 falls W(F[p/T]) =1 und W(F[p/1]) = 1.
Dabei heit ¢[p/TI: . mit p ersetzt durch T analog fur L.

Quiz: Welche der folgenden Quantifizierten Booleschen Formeln sind wahr? . ..
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TrueQBF in polynomiellem Speicher

Satz: TrueQBF ist in PSpace.
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TrueQBF in polynomiellem Speicher

Satz: TrueQBF ist in PSpace.

Beweis: Durch Angabe eines (Pseudo-)Algorithmus:

01 function TRUEQBF (F) {

02 1if F ,hat keine Quantoren® {

03 return , Aussagenlogische Auswertung von F“;

04 }elseif F=dp.G {

05 return (TrRueQBF (G[p/T]) OR TRUEQBF(G[p/L]));

06 }elseif F=VYp.G{

07 return (TrRueQBF (G[p/T]) AND TrueQBF(G[p/L])); } }

e Evaluation in Zeile 83 ist mdglich in PSpace.

® Rekursionen in Zeilen 05 und 87 kénnen der Reihe nach abgearbeitet werden,
wobei Speicher wiederverwendet wird.

® Jeder Rekursionsschritt benétigt polynomiellen Speicher.
* Maximale Rekursionstiefe ist die Anzahl der Atome (also linear in der Eingabe). O
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PSpace-Schwere

Ein Problem Q ist genau dann PSpace-schwer, wenn flr jedes Problem P in PSpace
eine polynomielle Reduktion P <, Q existiert. Q ist genau dann PSpace-vollstandig,
wenn es PSpace-schwer ist und in PSpace liegt.
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PSpace-Schwere

Ein Problem Q ist genau dann PSpace-schwer, wenn flr jedes Problem P in PSpace
eine polynomielle Reduktion P <, Q existiert. Q ist genau dann PSpace-vollstandig,
wenn es PSpace-schwer ist und in PSpace liegt.

Satz: TrueQBF ist PSpace-schwer.
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PSpace-Schwere

Ein Problem Q ist genau dann PSpace-schwer, wenn flr jedes Problem P in PSpace
eine polynomielle Reduktion P <, Q existiert. Q ist genau dann PSpace-vollstandig,
wenn es PSpace-schwer ist und in PSpace liegt.

Satz: TrueQBF ist PSpace-schwer.

Beweisidee: Nachste Vorlesung.
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QBF als Spiel

Man kann TrueQBF als Spiel auffassen:
® Das ,Spielbrett” ist eine QBF.
e Zwei Personen, Anton und Emilia, wahlen der Reihe nach Wahrheitswerte.

Steht ¥p vorn, so darf Anton einen Wert fir p wahlen und den Quantor I6schen.

Steht dp vorn, so darf Emilia einen Wert fir p wahlen und den Quantor I6schen.

Emilia gewinnt, wenn die Formel nach Entfernen aller Quantoren wahr wird;

andernfalls gewinnt Anton.
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QBF als Spiel

Man kann TrueQBF als Spiel auffassen:
® Das ,Spielbrett” ist eine QBF.
e Zwei Personen, Anton und Emilia, wahlen der Reihe nach Wahrheitswerte.

Steht ¥p vorn, so darf Anton einen Wert fir p wahlen und den Quantor I6schen.

Steht dp vorn, so darf Emilia einen Wert fir p wahlen und den Quantor I6schen.

Emilia gewinnt, wenn die Formel nach Entfernen aller Quantoren wahr wird;

andernfalls gewinnt Anton.

Beobachtung: Emilia hat genau dann eine Gewinnstrategie im Formelspiel, wenn die
gegebene QBF wahr ist.
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Beispiel: Sipsers Geography

Ein Kinderspiel:
e Zwei Personen benennen abwechselnd Stadte.
® Jede Stadt muss mit dem letzten Buchstaben der zuvor genannten beginnen.
® Wiederholungen sind verboten.
® Die erste Person, die keine Stadt mehr nennen kann, verliert.
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Beispiel: Sipsers Geography

Ein Kinderspiel:
e Zwei Personen benennen abwechselnd Stadte.
® Jede Stadt muss mit dem letzten Buchstaben der zuvor genannten beginnen.
® Wiederholungen sind verboten.
® Die erste Person, die keine Stadt mehr nennen kann, verliert.

Ein Mathematikerspiel:
e Zwei Personen markieren Knoten in einem gerichteten Graphen.

® Jeder Knoten muss ein Nachfolger des vorigen sein.

Wiederholungen sind verboten.

Die erste Person, die keinen Knoten markieren kann, verliert.
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Beispiel: Sipsers Geography

Ein Kinderspiel:
e Zwei Personen benennen abwechselnd Stadte.
® Jede Stadt muss mit dem letzten Buchstaben der zuvor genannten beginnen.
® Wiederholungen sind verboten.
® Die erste Person, die keine Stadt mehr nennen kann, verliert.

Ein Mathematikerspiel:
e Zwei Personen markieren Knoten in einem gerichteten Graphen.
® Jeder Knoten muss ein Nachfolger des vorigen sein.
® Wiederholungen sind verboten.
* Die erste Person, die keinen Knoten markieren kann, verliert.

Entscheidungsproblem Geography:

Gegeben: Ein gerichteter Graph und ein Startknoten.
Frage: Hat die beginnende Person eine Gewinnstrategie fur dieses Spiel?
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Geography ist PSpace-vollstandig

Satz: Geography ist PSpace-vollstandig.
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Geography ist PSpace-vollstandig

Satz: Geography ist PSpace-vollstandig.

Beweis: N&chste Vorlesung.
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Und was ist mit Schach?
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Und was ist mit Schach?

Schach selbst ist endlich:

® Es gibt nur endlich viele mégliche Stellungen.

® |n jeder hat Weil3 eine Gewinnstrategie oder nicht.
~> Problem in O(1).
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Und was ist mit Schach?

Schach selbst ist endlich:

® Es gibt nur endlich viele mégliche Stellungen.

® |n jeder hat Weil3 eine Gewinnstrategie oder nicht.
~> Problem in O(1).

Verallgemeinertes Schach:
* Beliebig groBes Spielbrett
® Beliebig viele Figuren

~> ExpTime-vollstandig (d.h. vermutlich nicht in PSpace).
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Und was ist mit Schach?

Schach selbst ist endlich:

® Es gibt nur endlich viele mégliche Stellungen.

® |n jeder hat Weil3 eine Gewinnstrategie oder nicht.
~> Problem in O(1).

Verallgemeinertes Schach:
* Beliebig groBes Spielbrett
® Beliebig viele Figuren
~> ExpTime-vollstandig (d.h. vermutlich nicht in PSpace).

Intuition: Schach ist schwerer als typische PSpace-Spiele, da man Zuge riickgangig

machen kann.
~» Eine Partie kann mehr als polynomiell viele Zuge dauern.
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Zusammenfassung und Ausblick

Erreichbarkeit in gerichteten Graphen ist das typische NL-vollstandige Problem.
Es gibt schwere Probleme, die keine leicht zu prifende Lésung haben.
Quantifizierte Boolesche Formeln verallgemeinern Aussagenlogik.

PSpace ist die Klasse der interessanten Zwei-Personen-Spiele, die nicht zu lange dauern.

Was erwartet uns als nachstes?

e Alternierung

® Noch mehr Logik
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