

Pushing the Boundaries of Tractable Multiperspective Reasoning

A Deduction Calculus for Standpoint \mathcal{EL}^+

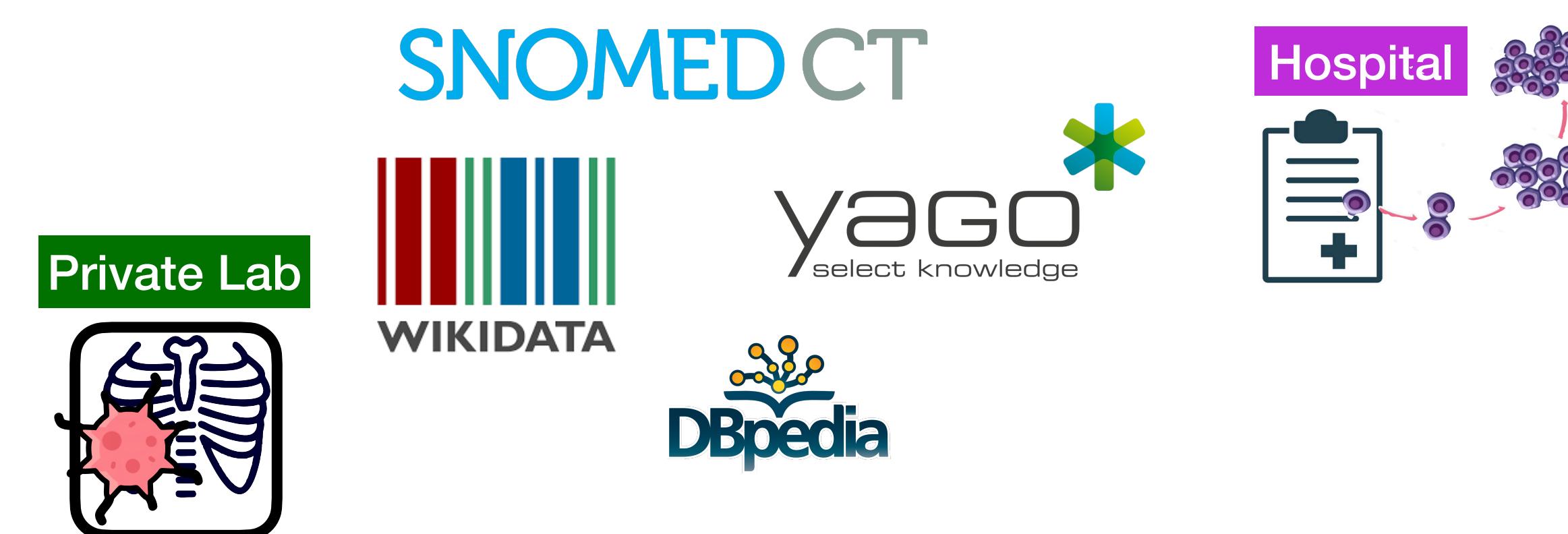
Lucía Gómez Álvarez, Sebastian Rudolph, Hannes Strass

International Center for
Computational Logic

Motivation

Multiperspective Reasoning

Motivation: Knowledge Integration


Motivation: Knowledge Integration

Diverse Knowledge Sources

Motivation: Knowledge Integration

Non-trivial combinations of the huge diversity of knowledge sources available

Diverse Knowledge Sources

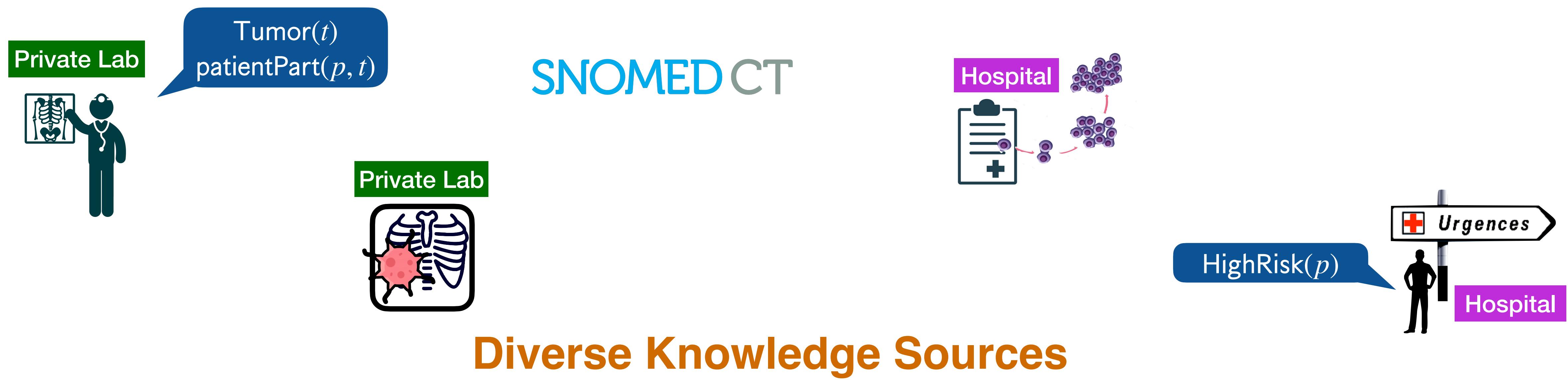
Motivation: Knowledge Integration

Non-trivial combinations of the huge diversity of knowledge sources available

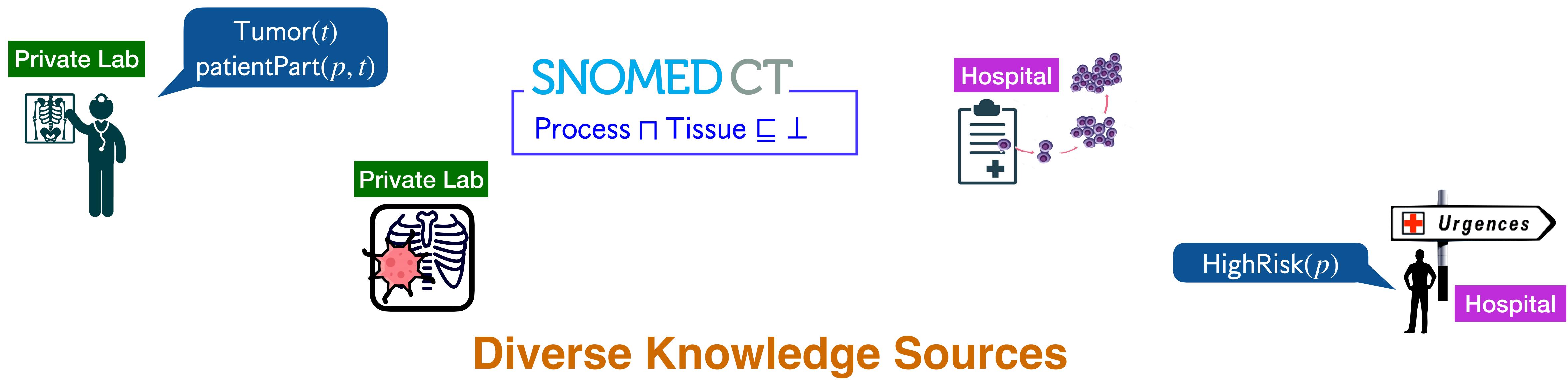
Diverse Knowledge Sources

Motivation: Knowledge Integration

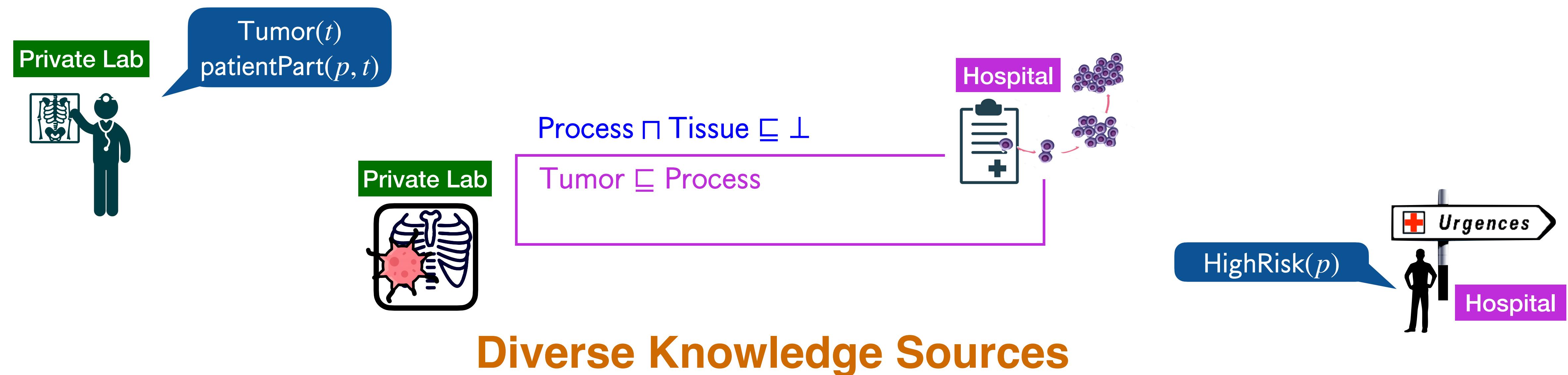
Non-trivial combinations of the huge diversity of knowledge sources available


Motivation: Knowledge Integration

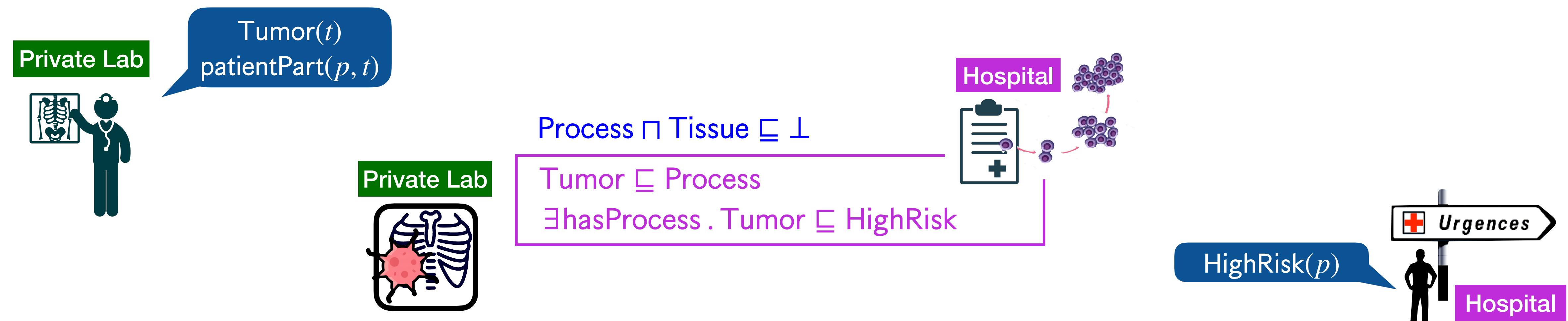
Non-trivial combinations of the huge diversity of knowledge sources available


Motivation: Knowledge Integration

Non-trivial combinations of the huge diversity of knowledge sources available

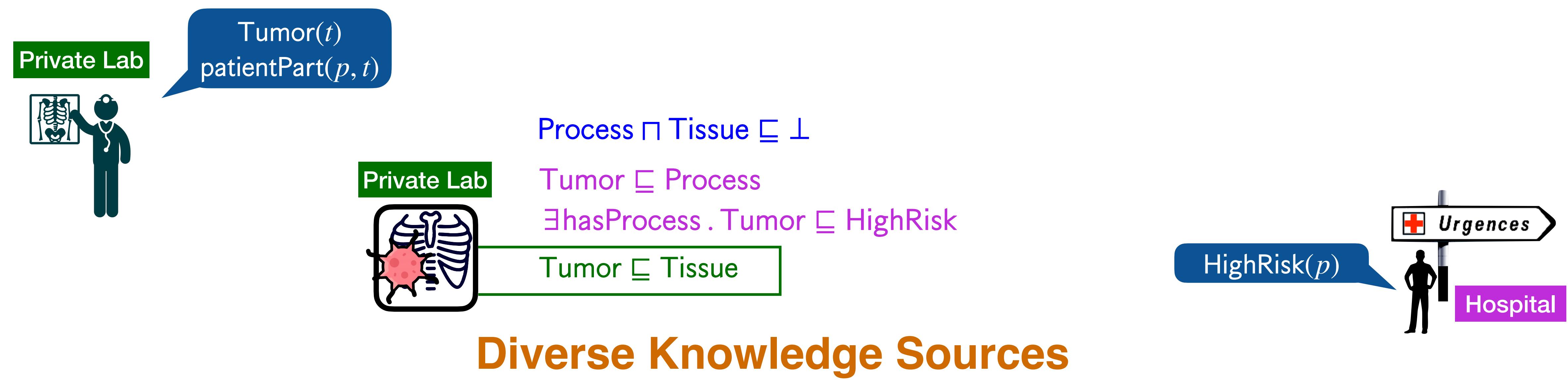

Motivation: Knowledge Integration

Non-trivial combinations of the huge diversity of knowledge sources available

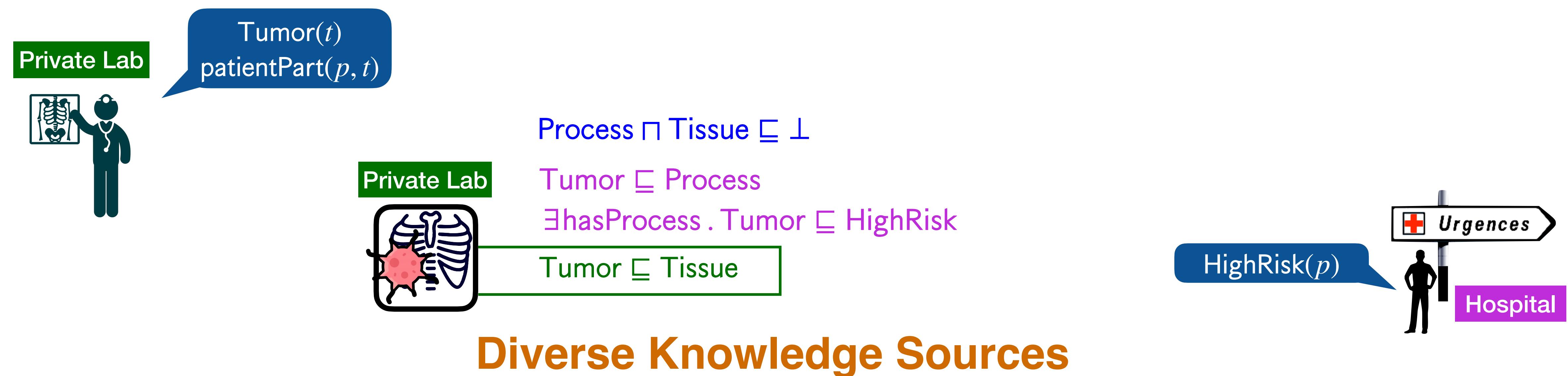

Motivation: Knowledge Integration

Non-trivial combinations of the huge diversity of knowledge sources available

Motivation: Knowledge Integration

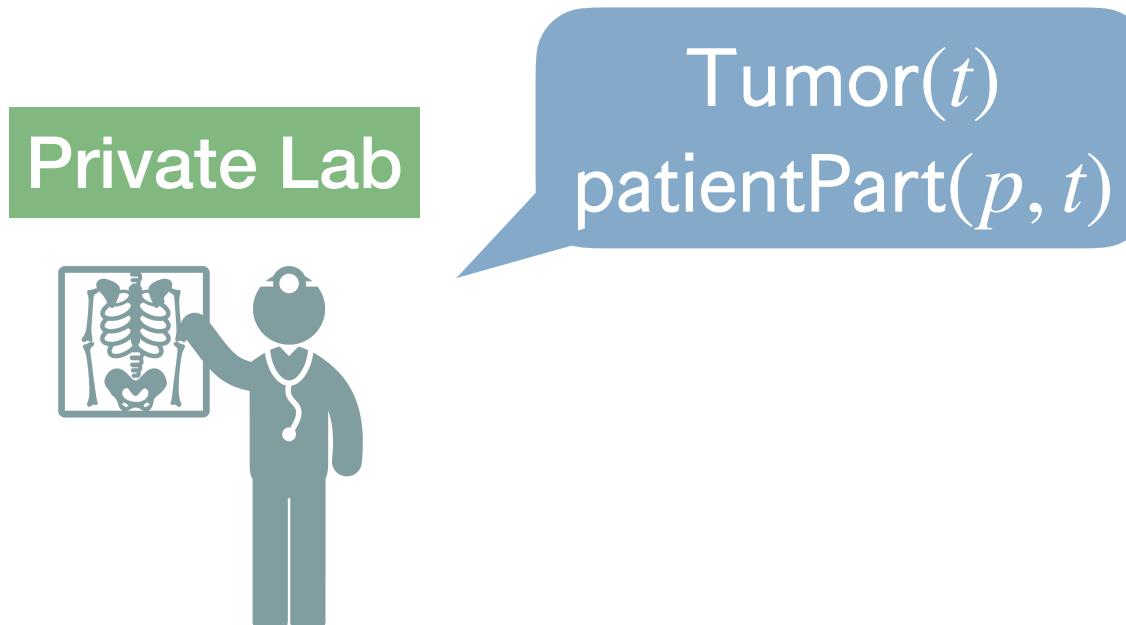

Non-trivial combinations of the huge diversity of knowledge sources available

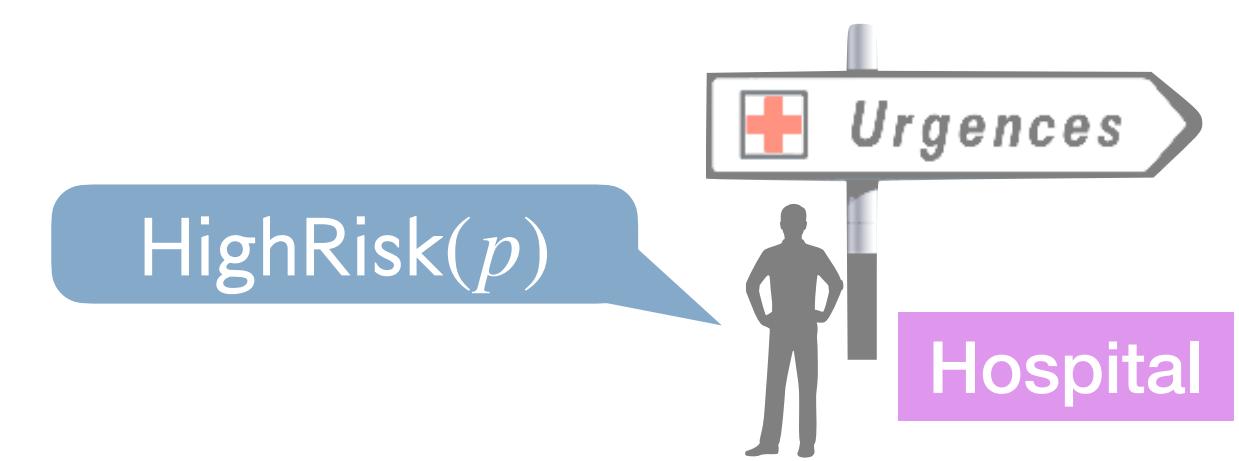
Diverse Knowledge Sources


Motivation: Knowledge Integration

Non-trivial combinations of the huge diversity of knowledge sources available

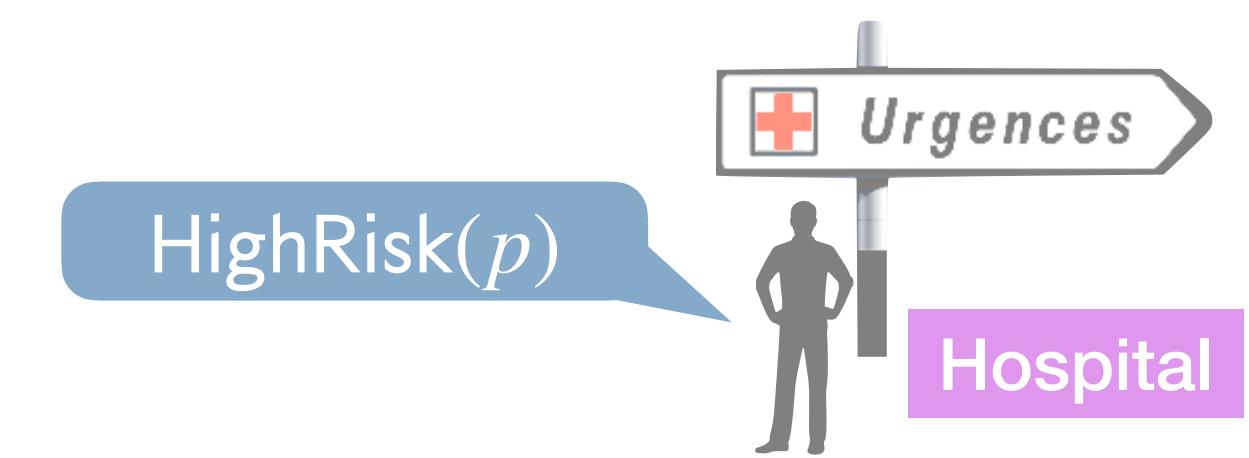
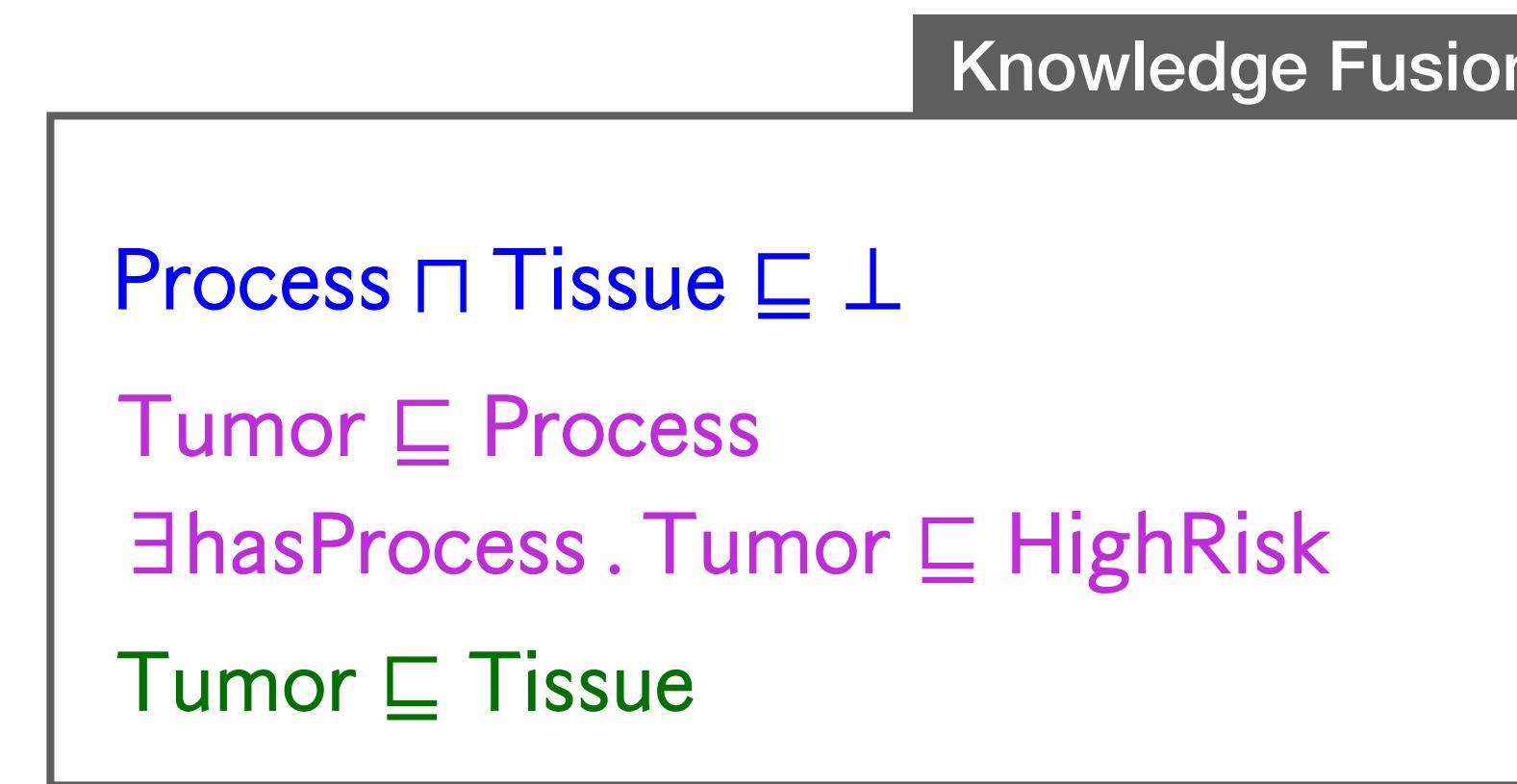
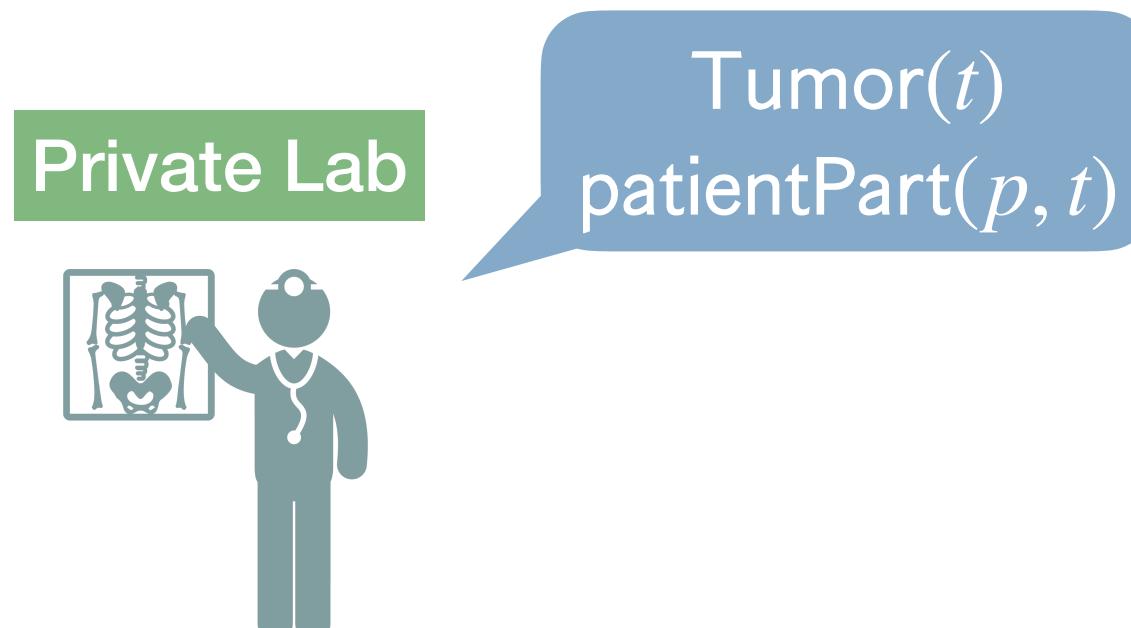
Motivation: Knowledge Integration


Non-trivial combinations of the huge diversity of knowledge sources available
 Knowledge sources embed the perspectives of their creators!

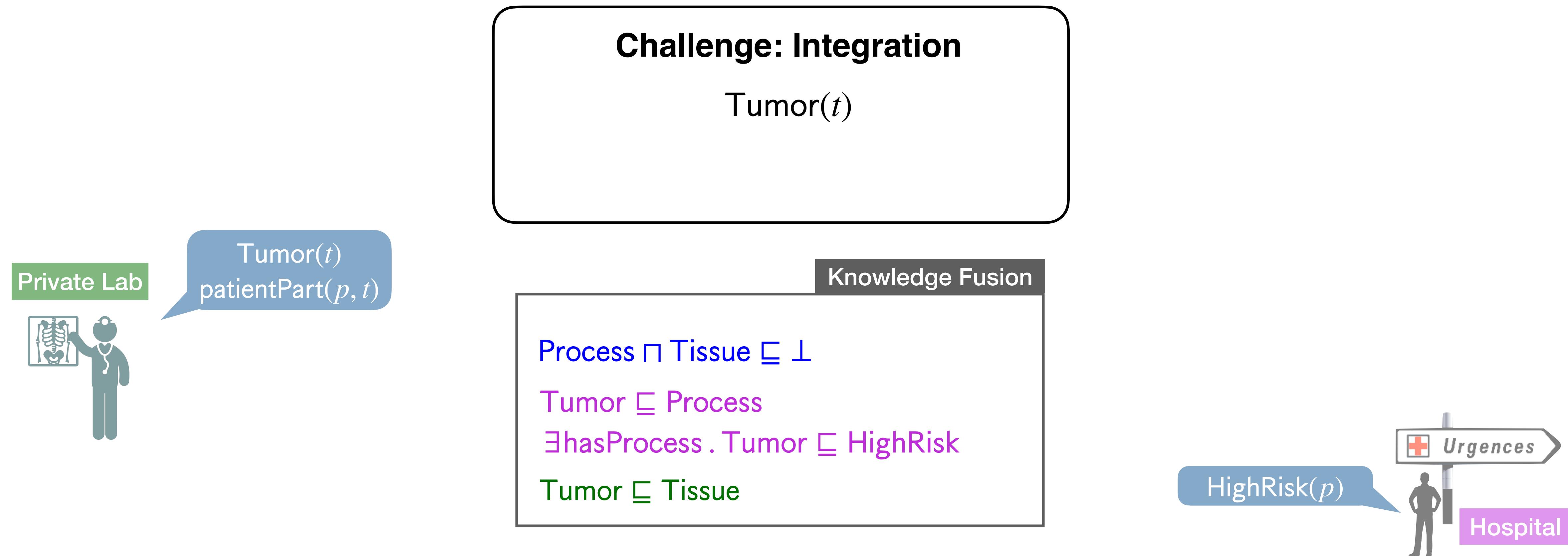

Motivation: Knowledge Integration

Non-trivial combinations of the huge diversity of knowledge sources available
Knowledge sources embed the perspectives of their creators!

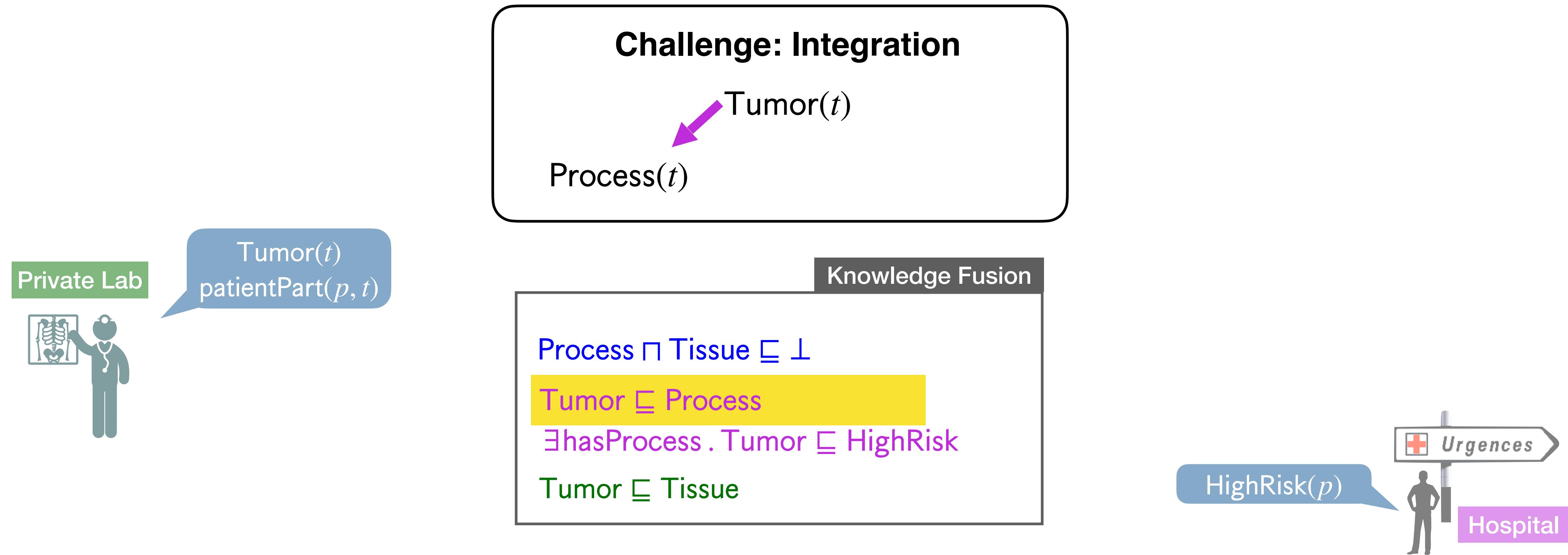
Challenge: Integration




Process \sqcap Tissue $\sqsubseteq \perp$
Tumor \sqsubseteq Process
 $\exists \text{hasProcess} . \text{Tumor} \sqsubseteq \text{HighRisk}$
Tumor \sqsubseteq Tissue

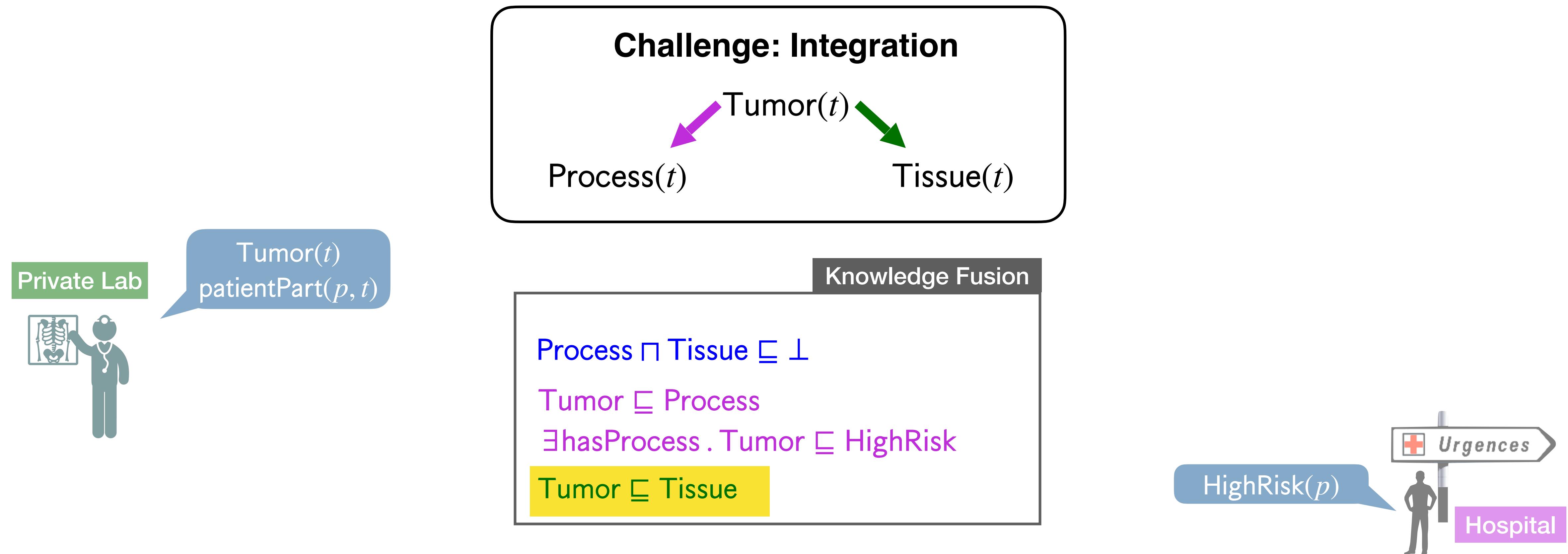
Motivation: Knowledge Integration


Non-trivial combinations of the huge diversity of knowledge sources available
Knowledge sources embed the perspectives of their creators!

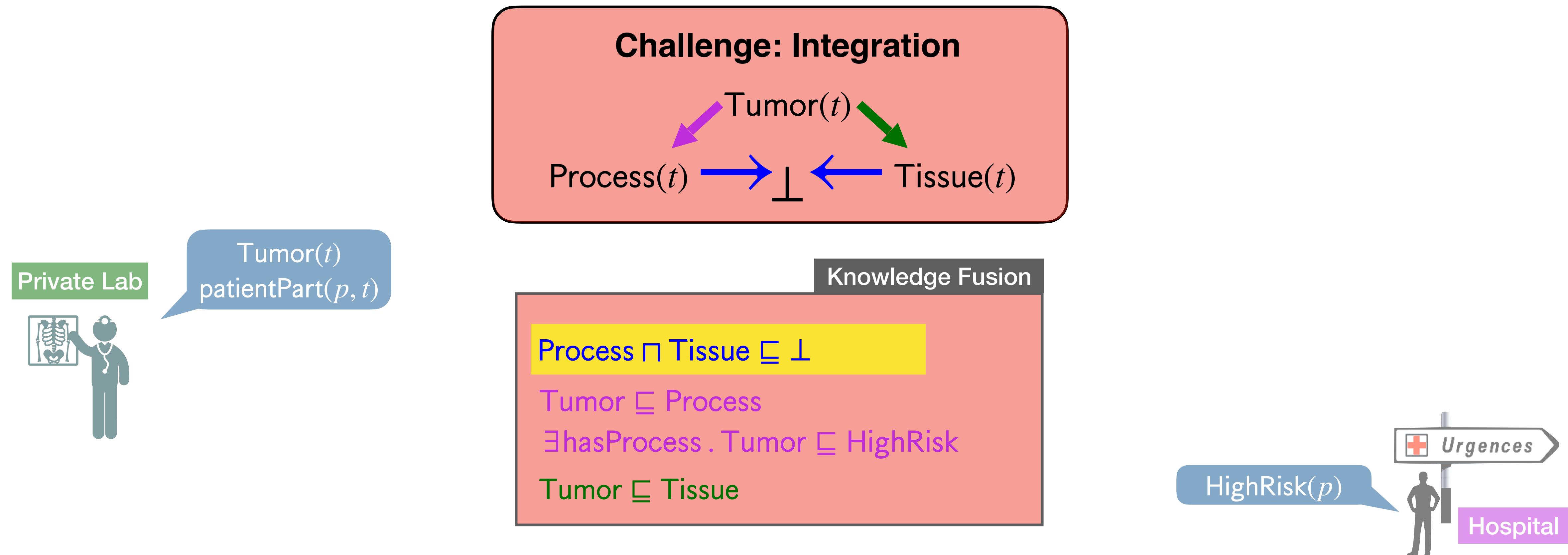
Challenge: Integration


Motivation: Knowledge Integration

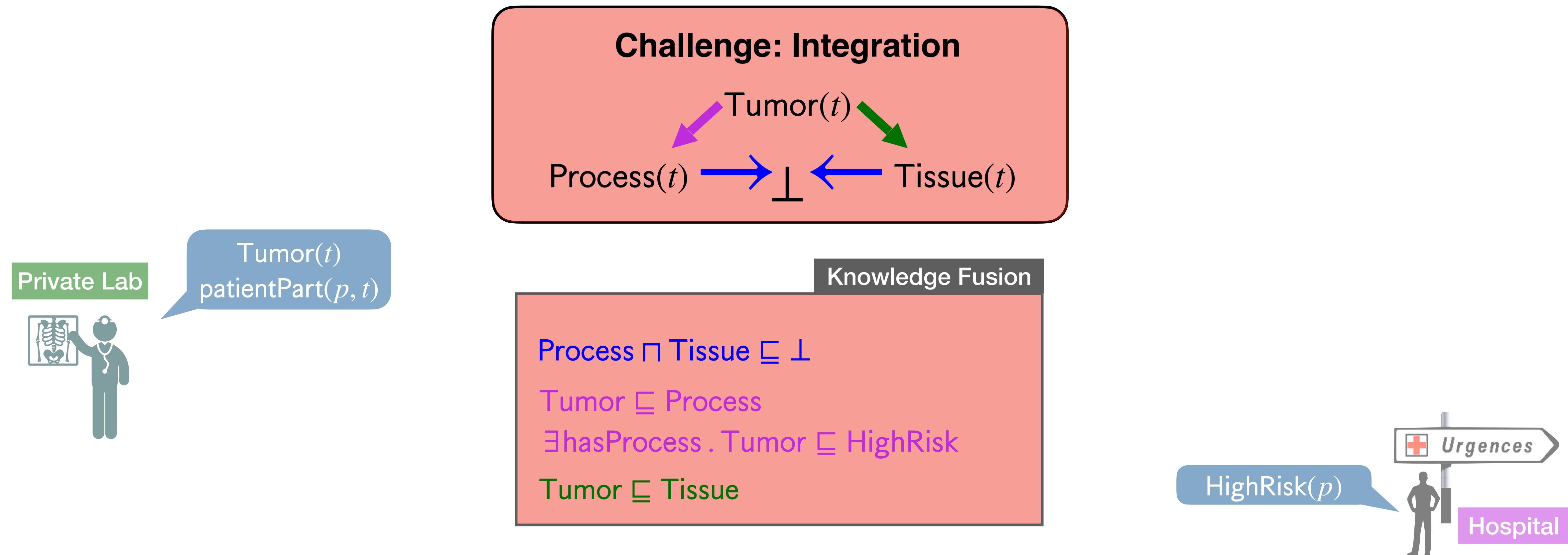
Non-trivial combinations of the huge diversity of knowledge sources available
 Knowledge sources embed the perspectives of their creators!


Motivation: Knowledge Integration

Non-trivial combinations of the huge diversity of knowledge sources available
 Knowledge sources embed the perspectives of their creators!


Motivation: Knowledge Integration

Non-trivial combinations of the huge diversity of knowledge sources available
 Knowledge sources embed the perspectives of their creators!


Motivation: Knowledge Integration

Non-trivial combinations of the huge diversity of knowledge sources available
 Knowledge sources embed the perspectives of their creators!

Motivation: Knowledge Integration

Non-trivial combinations of the huge diversity of knowledge sources available
 Knowledge sources embed the perspectives of their creators!

Multiperspective Ontology Management

Multiperspective Ontology Management

Challenge: combining diverse (potentially conflicting) sources without weakening them

Standpoint Logic

Multiperspective Ontology Management

Challenge: combining diverse (potentially conflicting) sources without weakening them

Standpoint Logic

- **Multimodal logic** characterised by simplified Kripke semantics

Multiperspective Ontology Management

Challenge: combining diverse (potentially conflicting) sources without weakening them

Standpoint Logic

- **Multimodal logic** characterised by simplified Kripke semantics
- Knowledge relative to “points of view” (standpoints)

Multiperspective Ontology Management

Challenge: combining diverse (potentially conflicting) sources without weakening them

Standpoint Logic

- **Multimodal logic** characterised by simplified Kripke semantics
- Knowledge relative to “points of view” (standpoints)

Process \sqcap Tissue $\sqsubseteq \perp$

Tumor \sqsubseteq Tissue

Tumor \sqsubseteq Process

$\exists \text{hasProcess} . \text{Tumor} \sqsubseteq \text{HighRisk}$

Multiperspective Ontology Management

Challenge: combining diverse (potentially conflicting) sources without weakening them

Standpoint Logic

- **Multimodal logic** characterised by simplified Kripke semantics
- Knowledge relative to “points of view” (standpoints)

$$\Box_S [\text{Process} \sqcap \text{Tissue} \sqsubseteq \perp]$$
$$\Diamond_L [\text{Tumor}] \sqsubseteq \Box_L [\text{Tissue}]$$
$$\Diamond_H [\text{Tumor}] \sqsubseteq \Box_H [\text{Process}]$$
$$\Box_H [\exists \text{hasProcess} . \text{Tumor} \sqsubseteq \text{HighRisk}]$$
$$\begin{aligned}\Box_e &\text{ Unequivocal to } e \\ \Diamond_e &\text{ Conceivable to } e\end{aligned}$$

Multiperspective Ontology Management

Challenge: combining diverse (potentially conflicting) sources without weakening them

Standpoint Logic

- **Multimodal logic** characterised by simplified Kripke semantics
- Knowledge relative to “points of view” (standpoints)

$\Box_S [\text{Process} \sqcap \text{Tissue} \sqsubseteq \perp]$

$\Diamond_L [\text{Tumor}] \sqsubseteq \Box_L [\text{Tissue}]$

$\Diamond_H [\text{Tumor}] \sqsubseteq \Box_H [\text{Process}]$

$\Box_H [\exists \text{hasProcess} . \text{Tumor} \sqsubseteq \text{HighRisk}]$

$(L \cup H) \preceq S$

\Box_e Unequivocal to e
 \Diamond_e Conceivable to e

(L and H inherit the axioms of S)

Multiperspective Ontology Management

Challenge: combining diverse (potentially conflicting) sources without weakening them

Standpoint Logic

- **Multimodal logic** characterised by simplified Kripke semantics
- Knowledge relative to “points of view” (standpoints)

$\Box_S [\text{Process} \sqcap \text{Tissue} \sqsubseteq \perp]$	CONSISTENT
$\Diamond_L [\text{Tumor}] \sqsubseteq \Box_L [\text{Tissue}]$	\Box_e Unequivocal to e
$\Diamond_H [\text{Tumor}] \sqsubseteq \Box_H [\text{Process}]$	\Diamond_e Conceivable to e
$\Box_H [\exists \text{hasProcess} . \text{Tumor} \sqsubseteq \text{HighRisk}]$	
$(L \cup H) \preceq S$	(L and H inherit the axioms of S)

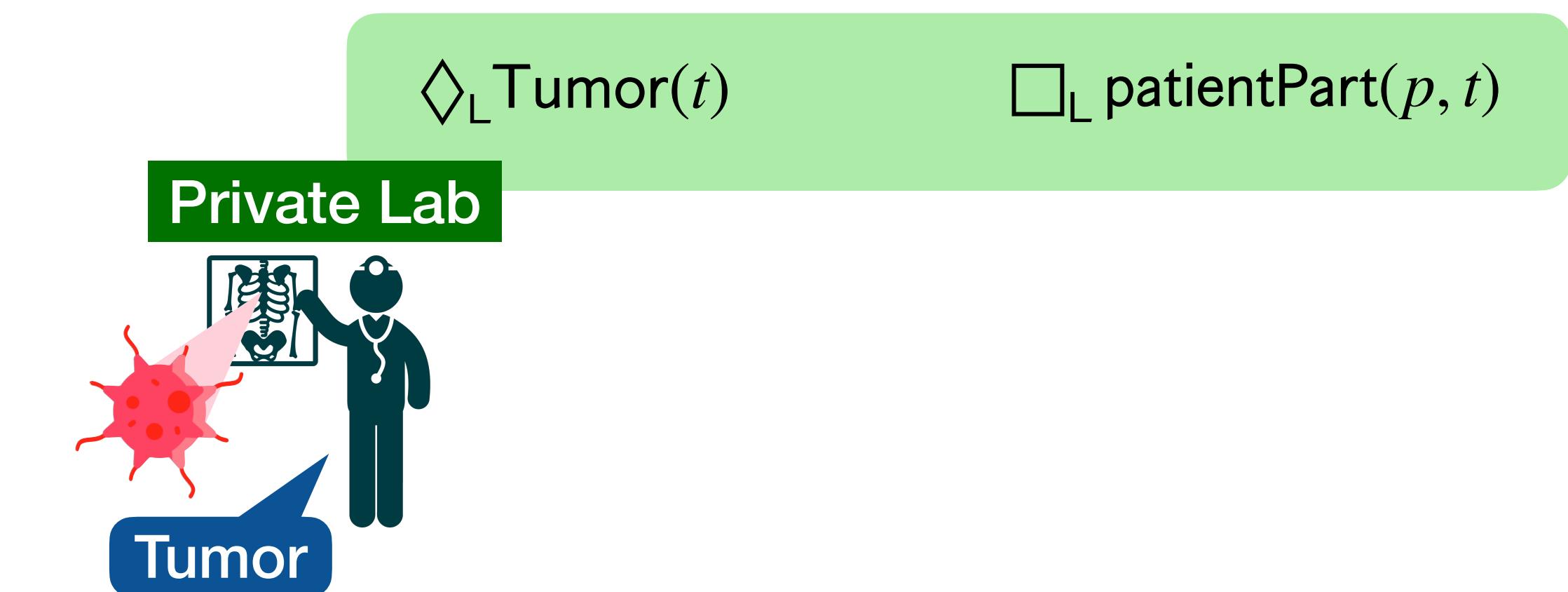
Multiperspective Ontology Management

Challenge: combining diverse (potentially conflicting) sources without weakening them

Standpoint Logic

- **Multimodal logic** characterised by simplified Kripke semantics
- Knowledge relative to “points of view” (standpoints)

CONSISTENT	
$\Box_S [\text{Process} \sqcap \text{Tissue} \sqsubseteq \perp]$	\Box_e Unequivocal to e
$\Diamond_L [\text{Tumor}] \sqsubseteq \Box_L [\text{Tissue}]$	\Diamond_e Conceivable to e
$\Diamond_H [\text{Tumor}] \sqsubseteq \Box_H [\text{Process}]$	
$\Box_H [\exists \text{hasProcess} . \text{Tumor} \sqsubseteq \text{HighRisk}]$	
$(L \cup H) \preceq S$	(L and H inherit the axioms of S)
$\Diamond_L [\exists \text{patientPart} . \text{Tumor}] \sqsubseteq \Box_H [\exists \text{hasProcess} . \text{Tumor}]$	

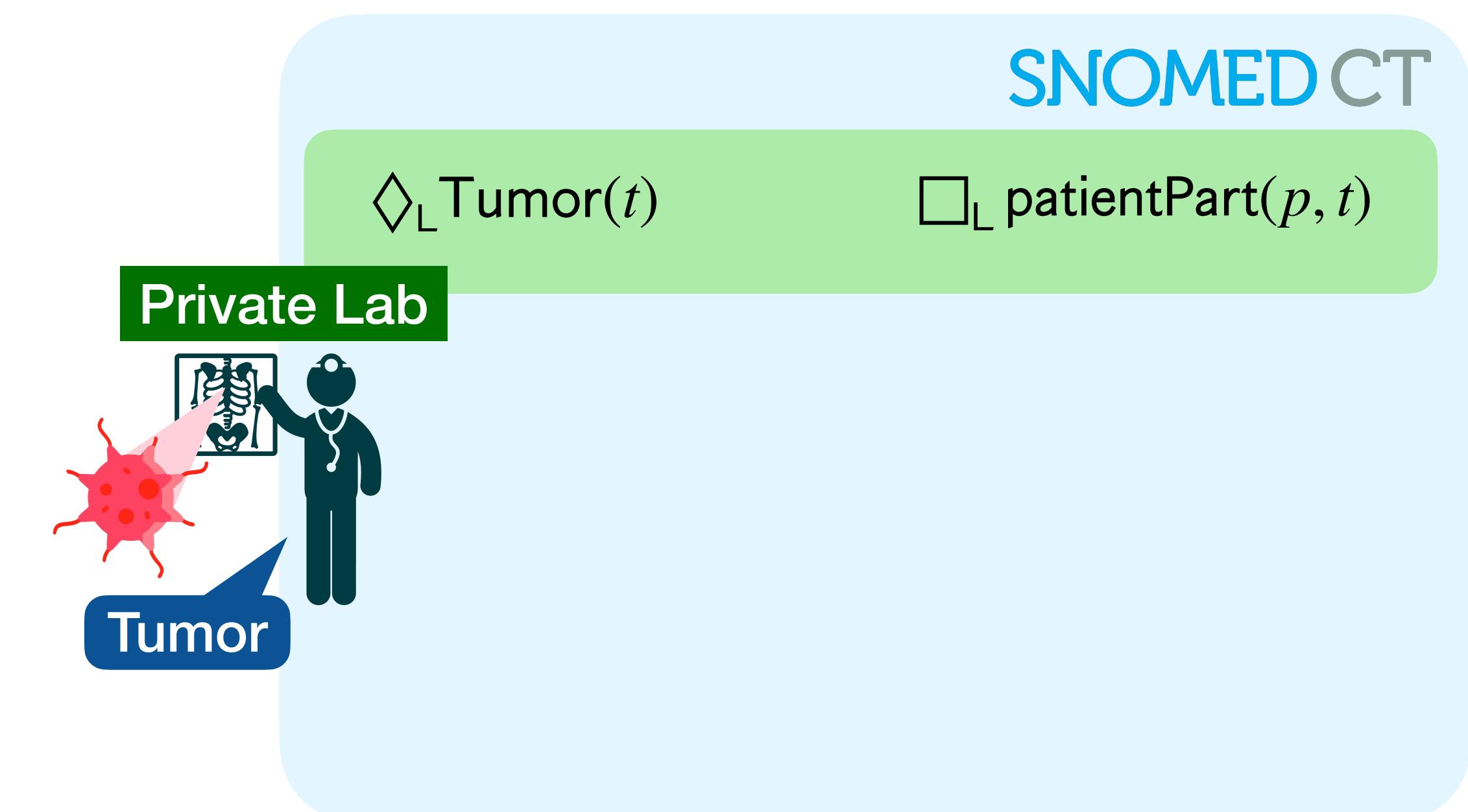

Multiperspective Ontology Management

Challenge: combining diverse (potentially conflicting) sources without weakening them

Standpoint Logic

- **Multimodal logic** characterised by simplified Kripke semantics
- Knowledge relative to “points of view” (standpoints)

CONSISTENT	
$\Box_S [Process \sqcap Tissue \sqsubseteq \perp]$	\Box_e Unequivocal to e
$\Diamond_L [Tumor] \sqsubseteq \Box_L [Tissue]$	\Diamond_e Conceivable to e
$\Diamond_H [Tumor] \sqsubseteq \Box_H [Process]$	
$\Box_H [\exists \text{hasProcess} . Tumor \sqsubseteq \text{HighRisk}]$	
$(L \cup H) \preceq S$	(L and H inherit the axioms of S)
$\Diamond_L [\exists \text{patientPart} . Tumor] \sqsubseteq \Box_H [\exists \text{hasProcess} . Tumor]$	

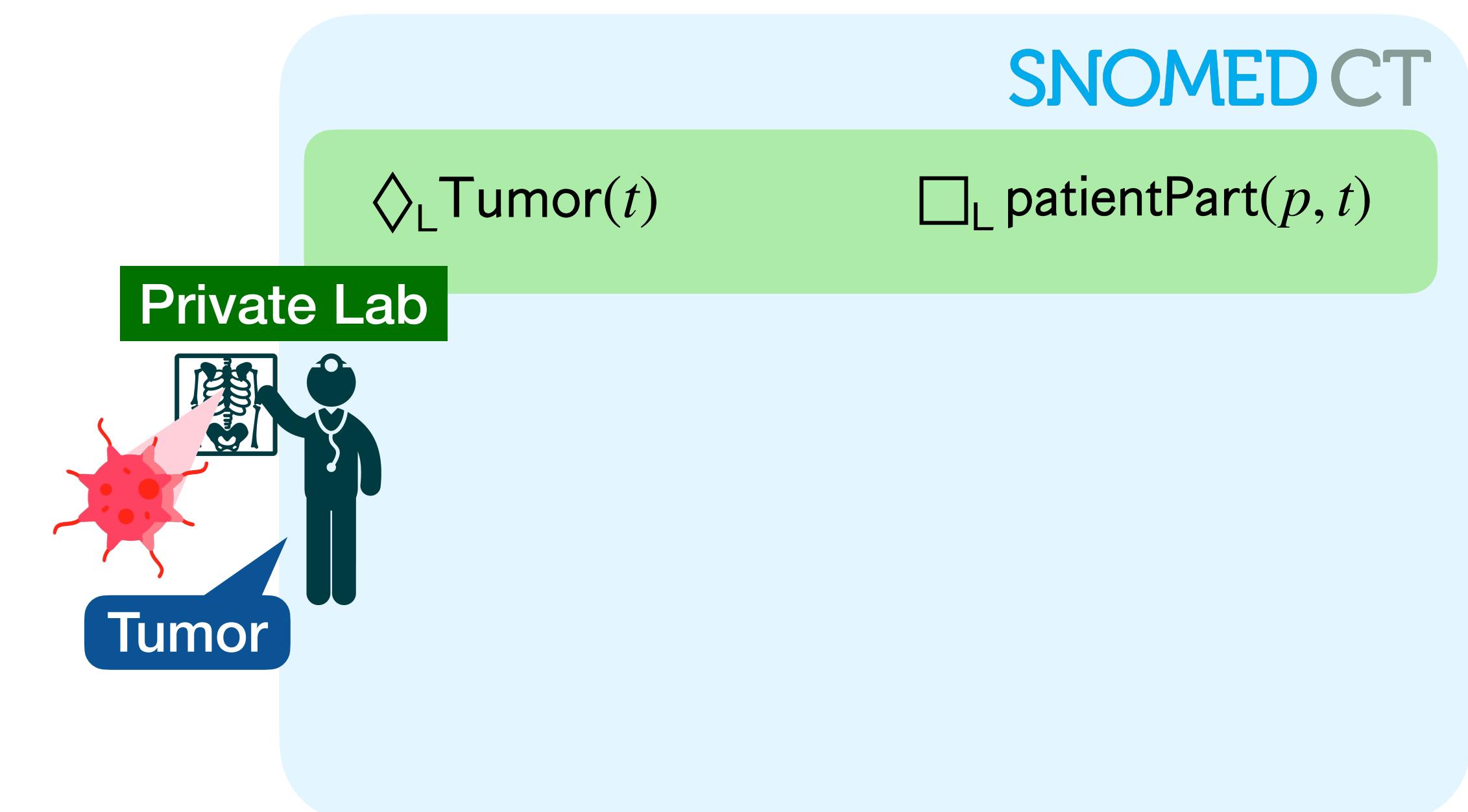

Multiperspective Ontology Management

Challenge: combining diverse (potentially conflicting) sources without weakening them

Standpoint Logic

- **Multimodal logic** characterised by simplified Kripke semantics
- Knowledge relative to “points of view” (standpoints)

CONSISTENT	
$\Box_S [Process \sqcap Tissue \sqsubseteq \perp]$	\Box_e Unequivocal to e
$\Diamond_L [Tumor] \sqsubseteq \Box_L [Tissue]$	\Diamond_e Conceivable to e
$\Diamond_H [Tumor] \sqsubseteq \Box_H [Process]$	
$\Box_H [\exists \text{hasProcess} . Tumor \sqsubseteq \text{HighRisk}]$	
$(L \cup H) \preceq S$	(L and H inherit the axioms of S)
$\Diamond_L [\exists \text{patientPart} . Tumor] \sqsubseteq \Box_H [\exists \text{hasProcess} . Tumor]$	

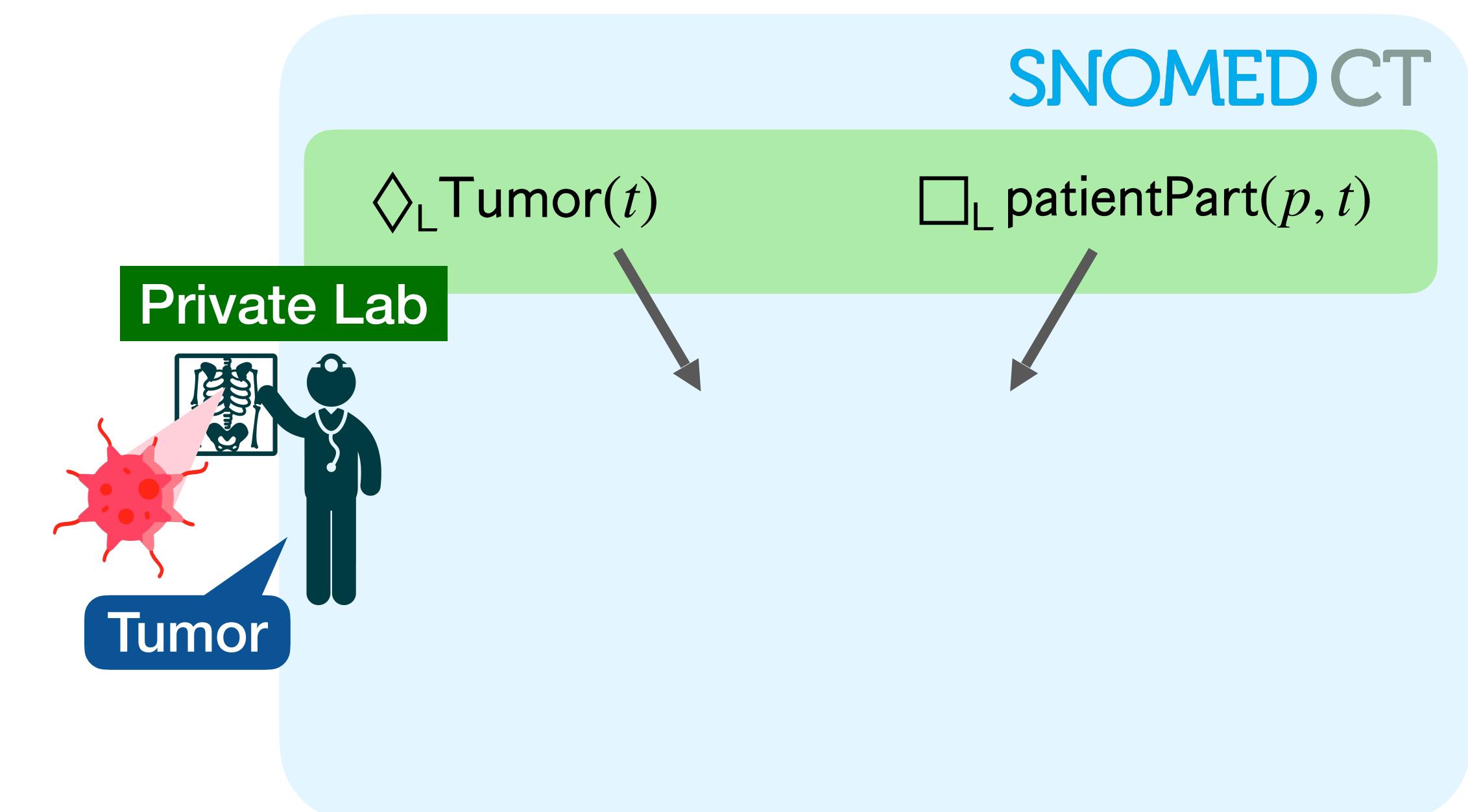

Multiperspective Ontology Management

Challenge: combining diverse (potentially conflicting) sources without weakening them

Standpoint Logic

- **Multimodal logic** characterised by simplified Kripke semantics
- Knowledge relative to “points of view” (standpoints)

CONSISTENT	
$\Box_S [Process \sqcap Tissue \sqsubseteq \perp]$	\Box_e Unequivocal to e
$\Diamond_L [Tumor] \sqsubseteq \Box_L [Tissue]$	\Diamond_e Conceivable to e
$\Diamond_H [Tumor] \sqsubseteq \Box_H [Process]$	
$\Box_H [\exists \text{hasProcess} . Tumor \sqsubseteq \text{HighRisk}]$	
$(L \cup H) \preceq S$	(L and H inherit the axioms of S)
$\Diamond_L [\exists \text{patientPart} . Tumor] \sqsubseteq \Box_H [\exists \text{hasProcess} . Tumor]$	

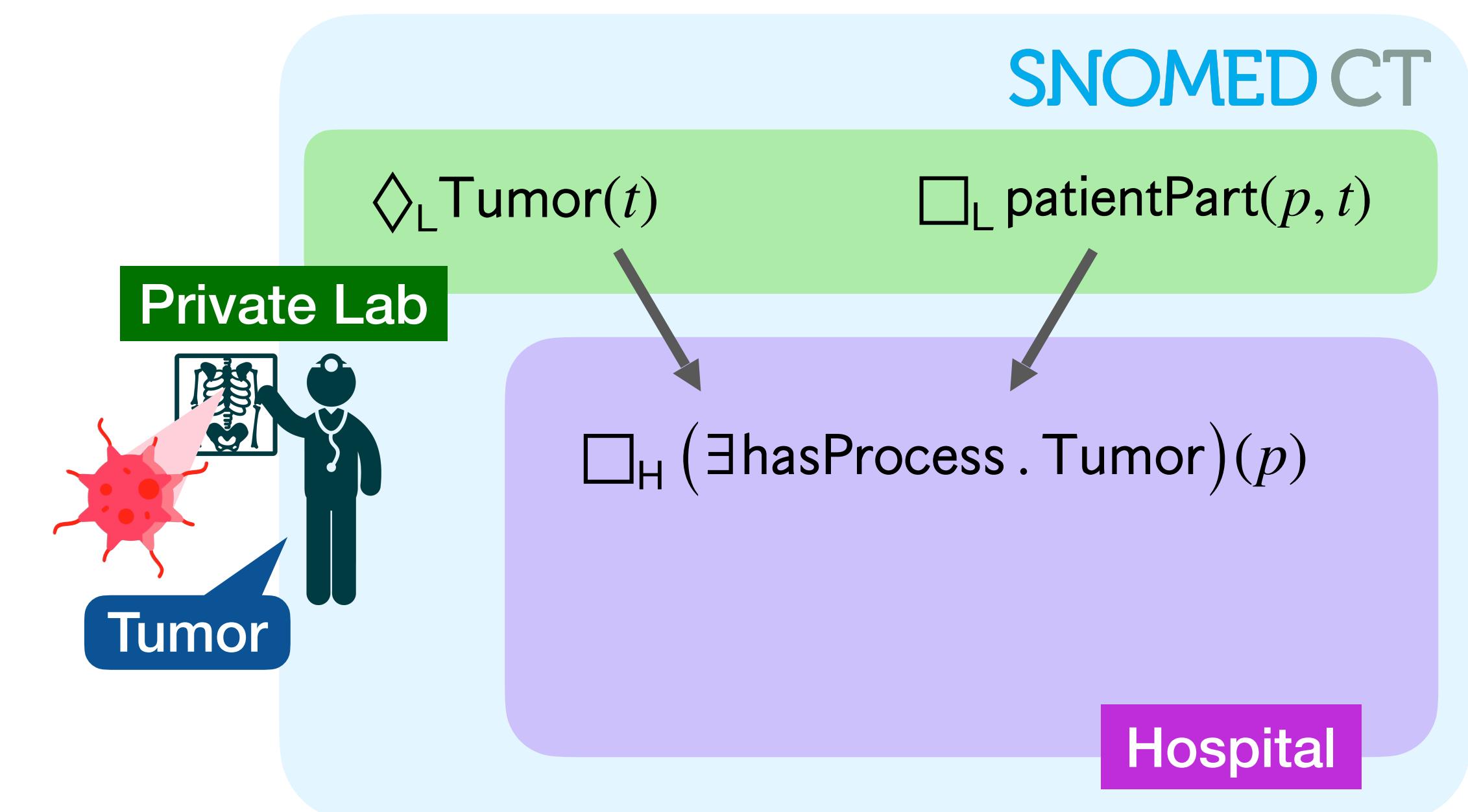

Multiperspective Ontology Management

Challenge: combining diverse (potentially conflicting) sources without weakening them

Standpoint Logic

- **Multimodal logic** characterised by simplified Kripke semantics
- Knowledge relative to “points of view” (standpoints)

CONSISTENT	
$\Box_S [Process \sqcap Tissue \sqsubseteq \perp]$	\Box_e Unequivocal to e
$\Diamond_L [Tumor] \sqsubseteq \Box_L [Tissue]$	\Diamond_e Conceivable to e
$\Diamond_H [Tumor] \sqsubseteq \Box_H [Process]$	
$\Box_H [\exists \text{hasProcess} . Tumor \sqsubseteq \text{HighRisk}]$	
$(L \cup H) \preceq S$	(L and H inherit the axioms of S)
$\Diamond_L [\exists \text{patientPart} . Tumor] \sqsubseteq \Box_H [\exists \text{hasProcess} . Tumor]$	

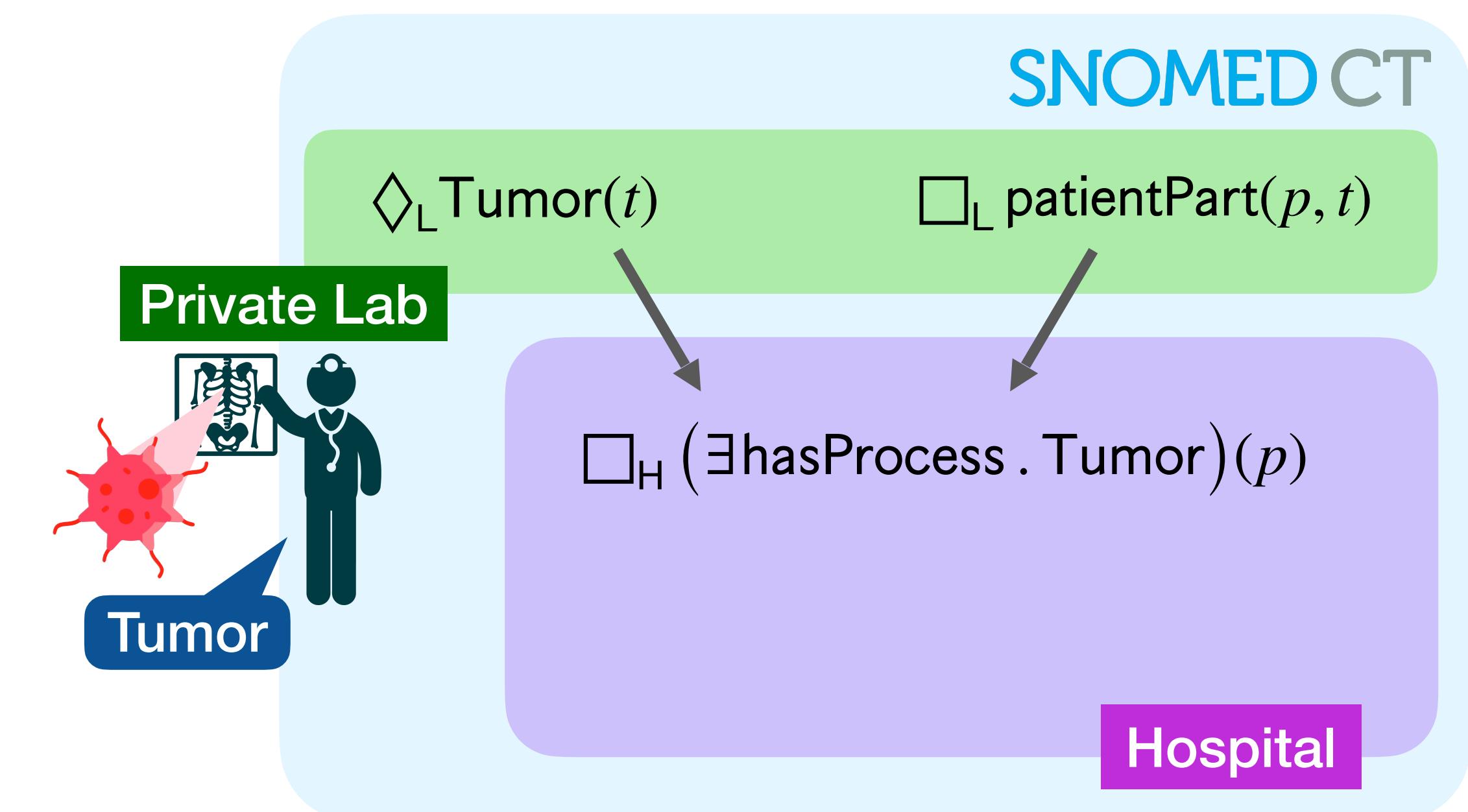

Multiperspective Ontology Management

Challenge: combining diverse (potentially conflicting) sources without weakening them

Standpoint Logic

- **Multimodal logic** characterised by simplified Kripke semantics
- Knowledge relative to “points of view” (standpoints)

CONSISTENT	
$\Box_S [Process \sqcap Tissue \sqsubseteq \perp]$	\Box_e Unequivocal to e
$\Diamond_L [Tumor] \sqsubseteq \Box_L [Tissue]$	\Diamond_e Conceivable to e
$\Diamond_H [Tumor] \sqsubseteq \Box_H [Process]$	
$\Box_H [\exists \text{hasProcess} . Tumor \sqsubseteq \text{HighRisk}]$	
$(L \cup H) \preceq S$	(L and H inherit the axioms of S)
$\Diamond_L [\exists \text{patientPart} . Tumor] \sqsubseteq \Box_H [\exists \text{hasProcess} . Tumor]$	

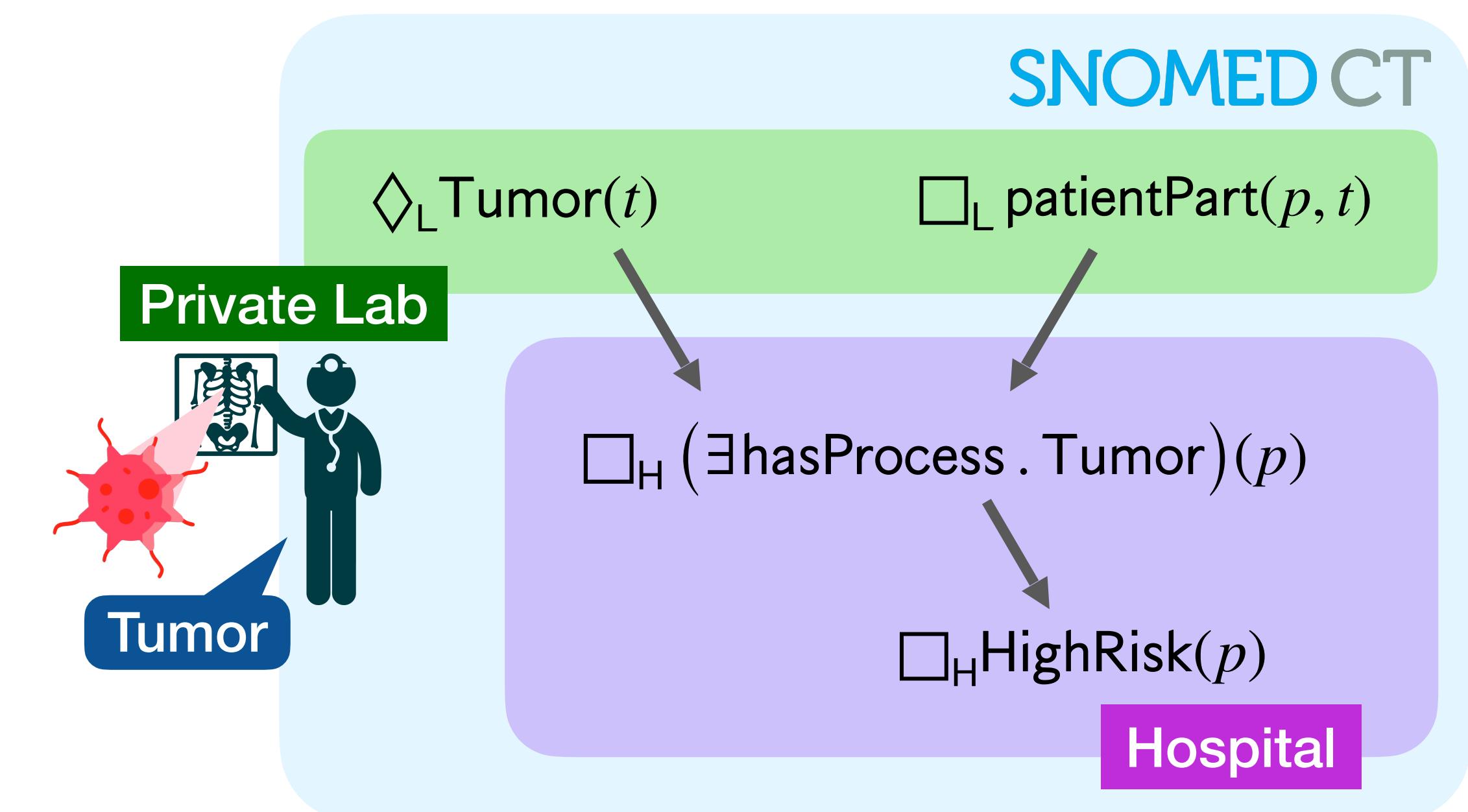

Multiperspective Ontology Management

Challenge: combining diverse (potentially conflicting) sources without weakening them

Standpoint Logic

- **Multimodal logic** characterised by simplified Kripke semantics
- Knowledge relative to “points of view” (standpoints)

CONSISTENT	
$\Box_S [Process \sqcap Tissue \sqsubseteq \perp]$	\Box_e Unequivocal to e
$\Diamond_L [Tumor] \sqsubseteq \Box_L [Tissue]$	\Diamond_e Conceivable to e
$\Diamond_H [Tumor] \sqsubseteq \Box_H [Process]$	
$\Box_H [\exists \text{hasProcess} . Tumor \sqsubseteq \text{HighRisk}]$	
$(L \cup H) \preceq S$	(L and H inherit the axioms of S)
$\Diamond_L [\exists \text{patientPart} . Tumor] \sqsubseteq \Box_H [\exists \text{hasProcess} . Tumor]$	

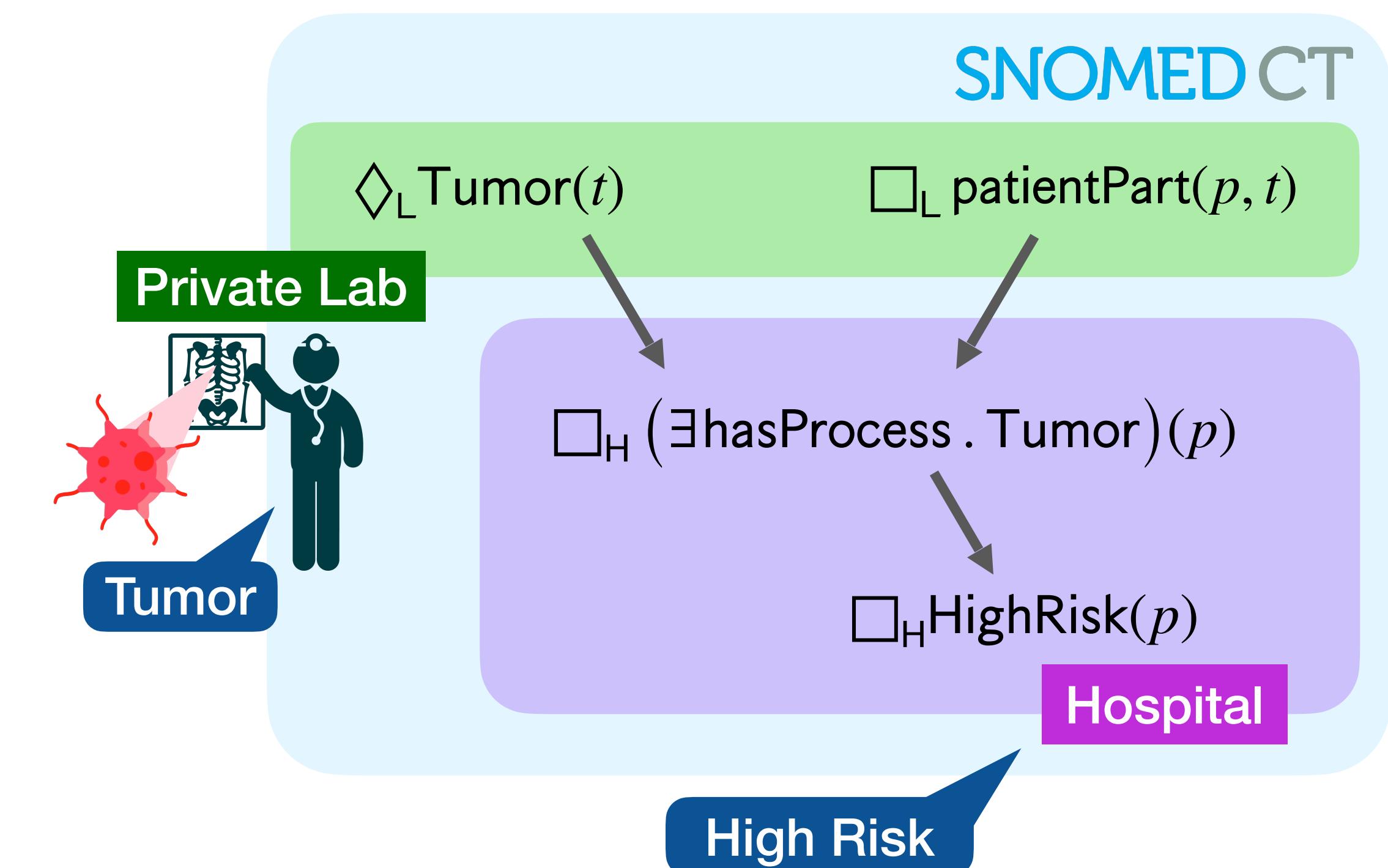

Multiperspective Ontology Management

Challenge: combining diverse (potentially conflicting) sources without weakening them

Standpoint Logic

- **Multimodal logic** characterised by simplified Kripke semantics
- Knowledge relative to “points of view” (standpoints)

CONSISTENT	
$\Box_S [Process \sqcap Tissue \sqsubseteq \perp]$	\Box_e Unequivocal to e
$\Diamond_L [Tumor] \sqsubseteq \Box_L [Tissue]$	\Diamond_e Conceivable to e
$\Diamond_H [Tumor] \sqsubseteq \Box_H [Process]$	
$\Box_H [\exists \text{hasProcess} . Tumor \sqsubseteq \text{HighRisk}]$	
$(L \cup H) \preceq S$	(L and H inherit the axioms of S)
$\Diamond_L [\exists \text{patientPart} . Tumor] \sqsubseteq \Box_H [\exists \text{hasProcess} . Tumor]$	


Multiperspective Ontology Management

Challenge: combining diverse (potentially conflicting) sources without weakening them

Standpoint Logic

- **Multimodal logic** characterised by simplified Kripke semantics
- Knowledge relative to “points of view” (standpoints)

CONSISTENT	
$\Box_S [Process \sqcap Tissue \sqsubseteq \perp]$	\Box_e Unequivocal to e
$\Diamond_L [Tumor] \sqsubseteq \Box_L [Tissue]$	\Diamond_e Conceivable to e
$\Diamond_H [Tumor] \sqsubseteq \Box_H [Process]$	
$\Box_H [\exists \text{hasProcess} . Tumor \sqsubseteq \text{HighRisk}]$	
$(L \cup H) \preceq S$	(L and H inherit the axioms of S)
$\Diamond_L [\exists \text{patientPart} . Tumor] \sqsubseteq \Box_H [\exists \text{hasProcess} . Tumor]$	

Standpoint \mathcal{EL}^+

The description logic \mathcal{EL}

The description logic \mathcal{EL}

Vocabulary $\langle N_C, N_R, N_I \rangle$ of concept, role, individual names

The description logic \mathcal{EL}

Vocabulary $\langle N_C, N_R, N_I \rangle$ of concept, role, individual names

Syntax:

The description logic \mathcal{EL}

Vocabulary $\langle N_C, N_R, N_I \rangle$ of concept, role, individual names

Syntax:

The **set of concepts** is given by

$$C ::= \top \mid \perp \mid A \mid C_1 \sqcap C_2 \mid \exists r . C$$

With $A \in N_C, r \in N_R$

The description logic \mathcal{EL}

Vocabulary $\langle N_C, N_R, N_I \rangle$ of concept, role, individual names

Syntax:

The **set of concepts** is given by

$$C ::= \top \mid \perp \mid A \mid C_1 \sqcap C_2 \mid \exists r . C$$

With $A \in N_C, r \in N_R$

The description logic \mathcal{EL}

Vocabulary $\langle N_C, N_R, N_I \rangle$ of concept, role, individual names

Syntax:

The **set of concepts** is given by

$$C ::= \top \mid \perp \mid A \mid C_1 \sqcap C_2 \mid \exists r . C$$

With $A \in N_C, r \in N_R$

Tissue

The description logic \mathcal{EL}

Vocabulary $\langle N_C, N_R, N_I \rangle$ of concept, role, individual names

Syntax:

The **set of concepts** is given by

$$C ::= \top \mid \perp \mid A \mid C_1 \sqcap C_2 \mid \exists r . C$$

With $A \in N_C, r \in N_R$

Tissue

Process \sqcap Tissue

The description logic \mathcal{EL}

Vocabulary $\langle N_C, N_R, N_I \rangle$ of concept, role, individual names

Syntax:

The **set of concepts** is given by

$$C ::= \top \mid \perp \mid A \mid C_1 \sqcap C_2 \mid \exists r . C$$

With $A \in N_C, r \in N_R$

Tissue

Process \sqcap Tissue

$\exists \text{patientPart} . \text{Tumor}$

The description logic \mathcal{EL}

Vocabulary $\langle N_C, N_R, N_I \rangle$ of concept, role, individual names

Syntax:

The **set of concepts** is given by

$$C ::= \top \mid \perp \mid A \mid C_1 \sqcap C_2 \mid \exists r . C$$

With $A \in N_C, r \in N_R$

Tissue

Process \sqcap Tissue

$\exists \text{patientPart} . \text{Tumor}$

The **set of axioms** includes:

The description logic \mathcal{EL}

Vocabulary $\langle N_C, N_R, N_I \rangle$ of concept, role, individual names

Syntax:

The **set of concepts** is given by

$$C ::= \top \mid \perp \mid A \mid C_1 \sqcap C_2 \mid \exists r . C$$

With $A \in N_C, r \in N_R$

Tissue

Process \sqcap Tissue

$\exists \text{patientPart} . \text{Tumor}$

The **set of axioms** includes:

- GCIs

$C \sqsubseteq D$

The description logic \mathcal{EL}

Vocabulary $\langle N_C, N_R, N_I \rangle$ of concept, role, individual names

Syntax:

The **set of concepts** is given by

$$C ::= \top \mid \perp \mid A \mid C_1 \sqcap C_2 \mid \exists r . C$$

With $A \in N_C, r \in N_R$

Tissue

Process \sqcap Tissue

$\exists \text{patientPart} . \text{Tumor}$

The **set of axioms** includes:

- GCIs

$C \sqsubseteq D$

$(\text{Tumor} \sqsubseteq \text{Tissue})$

The description logic \mathcal{EL}

Vocabulary $\langle N_C, N_R, N_I \rangle$ of concept, role, individual names

Syntax:

The **set of concepts** is given by

$$C ::= \top \mid \perp \mid A \mid C_1 \sqcap C_2 \mid \exists r . C$$

With $A \in N_C, r \in N_R$

Tissue

Process \sqcap Tissue

$\exists \text{patientPart} . \text{Tumor}$

The **set of axioms** includes:

- GCIs $C \sqsubseteq D$
- Assertions: $C(a), \quad r(a, b)$

$(\text{Tumor} \sqsubseteq \text{Tissue})$

The description logic \mathcal{EL}

Vocabulary $\langle N_C, N_R, N_I \rangle$ of concept, role, individual names

Syntax:

The **set of concepts** is given by

$$C ::= \top \mid \perp \mid A \mid C_1 \sqcap C_2 \mid \exists r . C$$

With $A \in N_C, r \in N_R$

Tissue

Process \sqcap Tissue

$\exists \text{patientPart} . \text{Tumor}$

The **set of axioms** includes:

- GCIs $C \sqsubseteq D$
- Assertions: $C(a), r(a, b)$

$(\text{Tumor} \sqsubseteq \text{Tissue}) \quad (\exists \text{patientPart} . \text{Tumor})(p)$

The description logic \mathcal{EL}

Vocabulary $\langle N_C, N_R, N_I \rangle$ of concept, role, individual names

Syntax:

The **set of concepts** is given by

$$C ::= \top \mid \perp \mid A \mid C_1 \sqcap C_2 \mid \exists r . C$$

With $A \in N_C, r \in N_R$

Semantics:

Tissue

Process \sqcap Tissue

$\exists \text{patientPart} . \text{Tumor}$

The **set of axioms** includes:

- GCIs $C \sqsubseteq D$
- Assertions: $C(a), r(a, b)$

$(\text{Tumor} \sqsubseteq \text{Tissue}) \quad (\exists \text{patientPart} . \text{Tumor})(p)$

The description logic \mathcal{EL}

Vocabulary $\langle N_C, N_R, N_I \rangle$ of concept, role, individual names

Syntax:

The **set of concepts** is given by

$C ::= \top \mid \perp \mid A \mid C_1 \sqcap C_2 \mid \exists r . C$

With $A \in N_C, r \in N_R$

Tissue

Process \sqcap Tissue

$\exists \text{patientPart} . \text{Tumor}$

The **set of axioms** includes:

- GCIs $C \sqsubseteq D$
- Assertions: $C(a), r(a, b)$

$(\text{Tumor} \sqsubseteq \text{Tissue}) \quad (\exists \text{patientPart} . \text{Tumor})(p)$

The description logic \mathcal{EL}

Vocabulary $\langle N_C, N_R, N_I \rangle$ of concept, role, individual names

Syntax:

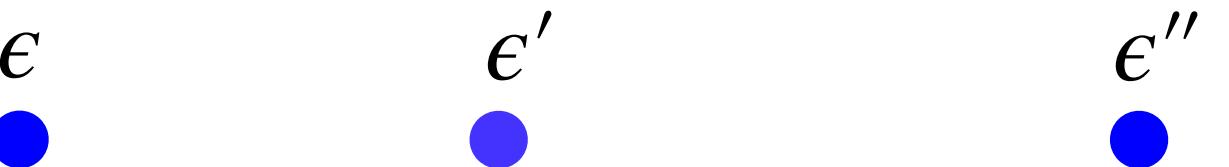
The **set of concepts** is given by

$C ::= \top \mid \perp \mid A \mid C_1 \sqcap C_2 \mid \exists r . C$

With $A \in N_C, r \in N_R$

Semantics: $\mathcal{I} = \langle \Delta, \cdot^{\mathcal{I}} \rangle$

Tissue


Process \sqcap Tissue

$\exists \text{patientPart} . \text{Tumor}$

The **set of axioms** includes:

- GCI $C \sqsubseteq D$

- Assertions: $C(a), r(a, b)$

$(\text{Tumor} \sqsubseteq \text{Tissue}) \quad (\exists \text{patientPart} . \text{Tumor})(p)$

The description logic \mathcal{EL}

Vocabulary $\langle N_C, N_R, N_I \rangle$ of concept, role, individual names

Syntax:

The **set of concepts** is given by

$C ::= \top \mid \perp \mid A \mid C_1 \sqcap C_2 \mid \exists r . C$

With $A \in N_C, r \in N_R$

Tissue

Process \sqcap Tissue

$\exists \text{patientPart} . \text{Tumor}$

The **set of axioms** includes:

- GCI $C \sqsubseteq D$

- Assertions: $C(a), r(a, b)$

$(\text{Tumor} \sqsubseteq \text{Tissue}) \quad (\exists \text{patientPart} . \text{Tumor})(p)$

Semantics: $\mathcal{I} = \langle \Delta, \cdot^{\mathcal{I}} \rangle$

$\epsilon = p$ ϵ' ϵ''

The description logic \mathcal{EL}

Vocabulary $\langle N_C, N_R, N_I \rangle$ of concept, role, individual names

Syntax:

The **set of concepts** is given by

$$C ::= \top \mid \perp \mid A \mid C_1 \sqcap C_2 \mid \exists r . C$$

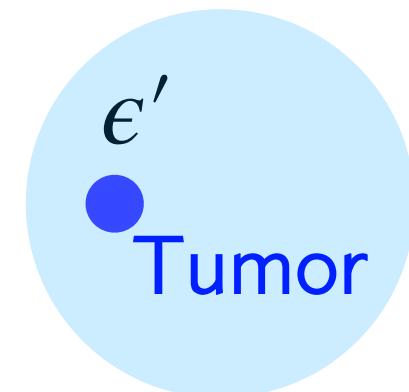
With $A \in N_C, r \in N_R$

Semantics: $\mathcal{I} = \langle \Delta, \cdot^{\mathcal{I}} \rangle$

Tissue

Process \sqcap Tissue

$\exists \text{patientPart} . \text{Tumor}$


The **set of axioms** includes:

- GCIs $C \sqsubseteq D$

- Assertions: $C(a), r(a, b)$

$(\text{Tumor} \sqsubseteq \text{Tissue}) \quad (\exists \text{patientPart} . \text{Tumor})(p)$

$\epsilon = p$

ϵ''

The description logic \mathcal{EL}

Vocabulary $\langle N_C, N_R, N_I \rangle$ of concept, role, individual names

Syntax:

The **set of concepts** is given by

$$C ::= \top \mid \perp \mid A \mid C_1 \sqcap C_2 \mid \exists r . C$$

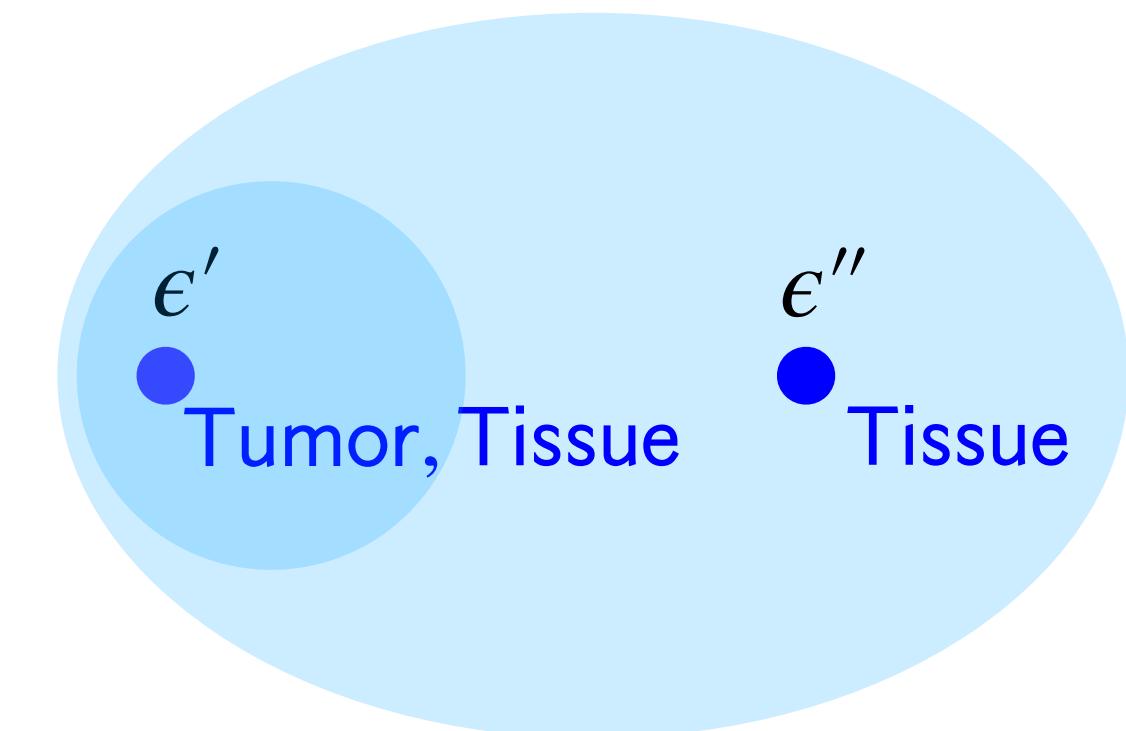
With $A \in N_C, r \in N_R$

Tissue

Process \sqcap Tissue

$\exists \text{patientPart} . \text{Tumor}$

The **set of axioms** includes:


- GCIs $C \sqsubseteq D$

- Assertions: $C(a), r(a, b)$

$(\text{Tumor} \sqsubseteq \text{Tissue}) \quad (\exists \text{patientPart} . \text{Tumor})(p)$

Semantics: $\mathcal{I} = \langle \Delta, \cdot^{\mathcal{I}} \rangle$

$$\epsilon = p$$

The description logic \mathcal{EL}

Vocabulary $\langle N_C, N_R, N_I \rangle$ of concept, role, individual names

Syntax:

The **set of concepts** is given by

$$C ::= \top \mid \perp \mid A \mid C_1 \sqcap C_2 \mid \exists r . C$$

With $A \in N_C, r \in N_R$

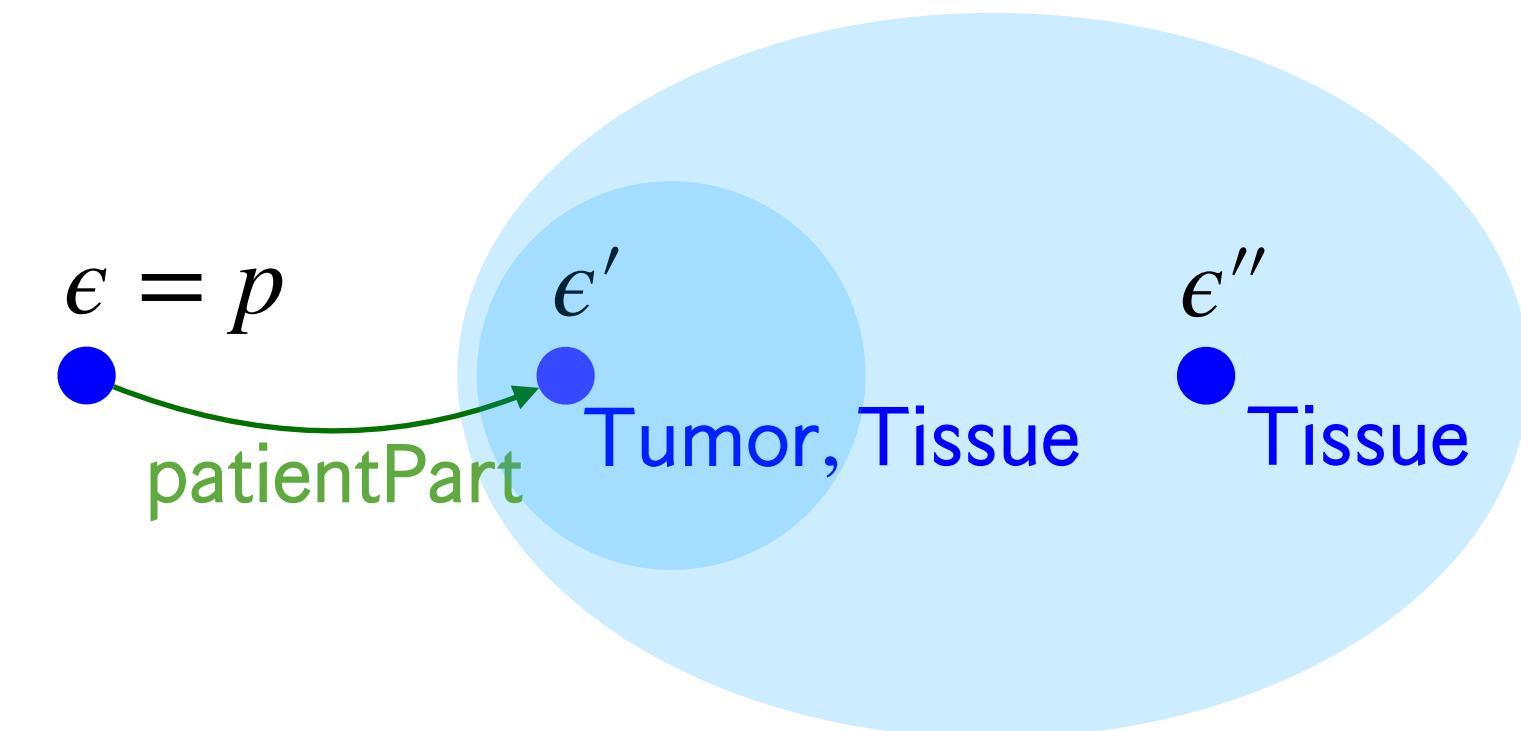
Tissue

Process \sqcap Tissue

$\exists \text{patientPart} . \text{Tumor}$

The **set of axioms** includes:

- GCIs


$$C \sqsubseteq D$$

- Assertions: $C(a), r(a, b)$

$(\text{Tumor} \sqsubseteq \text{Tissue})$

$(\exists \text{patientPart} . \text{Tumor})(p)$

Semantics: $\mathcal{I} = \langle \Delta, \cdot^{\mathcal{I}} \rangle$

The description logic \mathcal{EL}

Vocabulary $\langle N_C, N_R, N_I \rangle$ of concept, role, individual names

Syntax:

The **set of concepts** is given by

$$C ::= \top \mid \perp \mid A \mid C_1 \sqcap C_2 \mid \exists r . C$$

With $A \in N_C, r \in N_R$

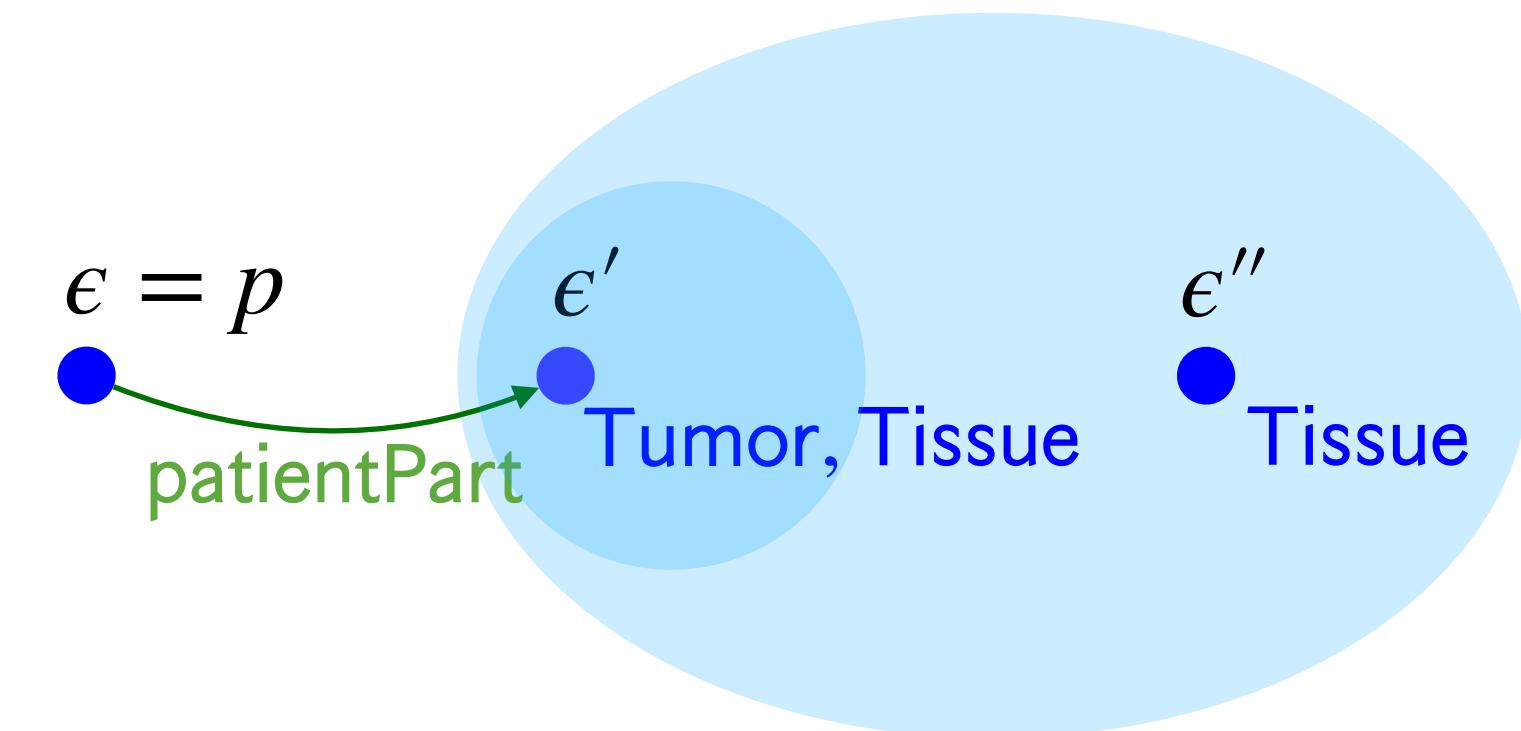
Tissue

Process \sqcap Tissue

$\exists \text{patientPart} . \text{Tumor}$

The **set of axioms** includes:

- GCIs


$$C \sqsubseteq D$$

- Assertions: $C(a), r(a, b)$

$(\text{Tumor} \sqsubseteq \text{Tissue})$

$(\exists \text{patientPart} . \text{Tumor})(p)$

Semantics: $\mathcal{I} = \langle \Delta, \cdot^{\mathcal{I}} \rangle$

The description logic \mathcal{EL}

Vocabulary $\langle N_C, N_R, N_I \rangle$ of concept, role, individual names

Syntax:

The **set of concepts** is given by

$$C ::= \top \mid \perp \mid A \mid C_1 \sqcap C_2 \mid \exists r . C$$

With $A \in N_C, r \in N_R$

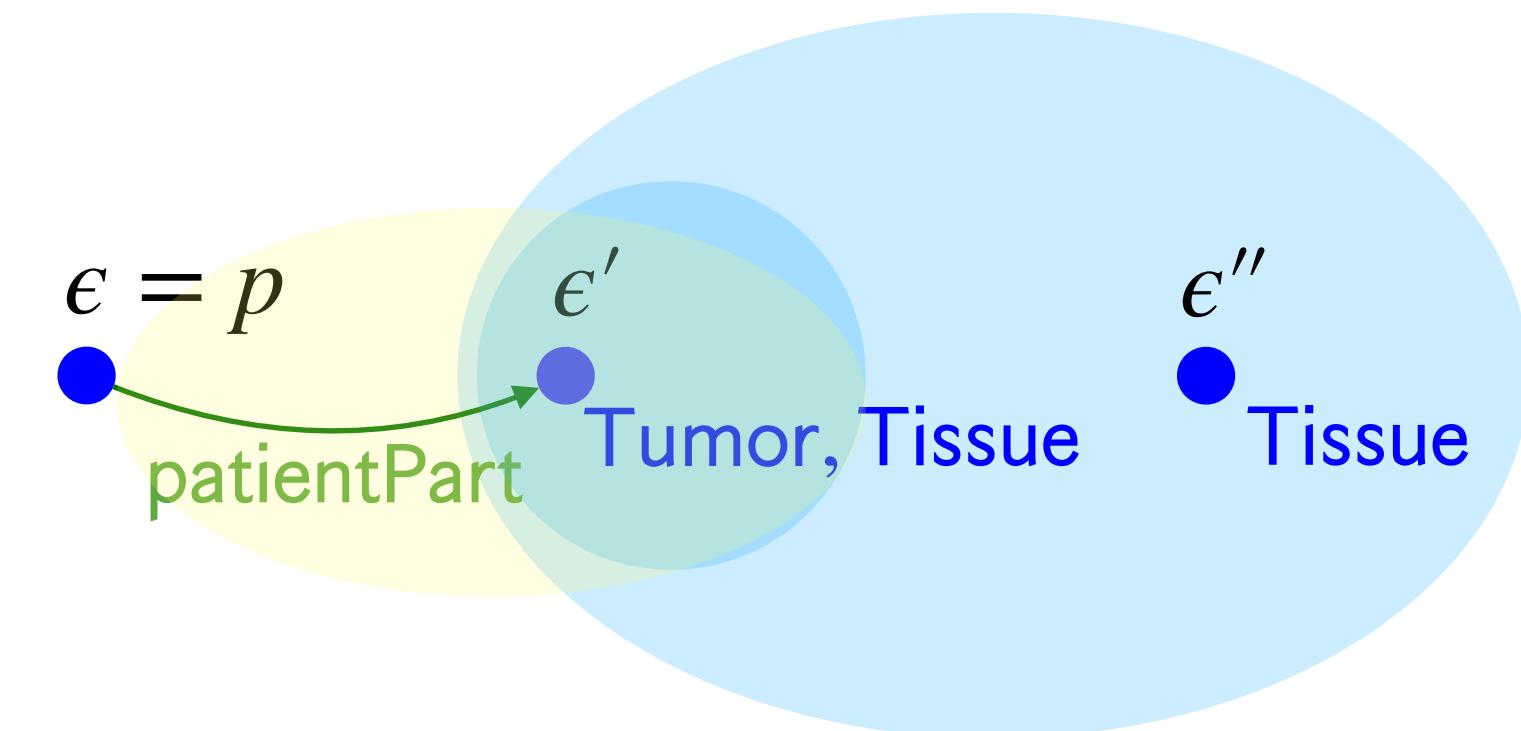
Tissue

Process \sqcap Tissue

$\exists \text{patientPart} . \text{Tumor}$

The **set of axioms** includes:

- GCIs


$$C \sqsubseteq D$$

- Assertions: $C(a), r(a, b)$

$$(\text{Tumor} \sqsubseteq \text{Tissue})$$

$$(\exists \text{patientPart} . \text{Tumor})(p)$$

Semantics: $\mathcal{I} = \langle \Delta, \cdot^{\mathcal{I}} \rangle$

The description logic \mathcal{EL}

Vocabulary $\langle N_C, N_R, N_I \rangle$ of concept, role, individual names

Syntax:

The **set of concepts** is given by

$$C ::= \top \mid \perp \mid A \mid C_1 \sqcap C_2 \mid \exists r . C$$

With $A \in N_C, r \in N_R$

Tissue	
Process \sqcap Tissue	$\exists \text{patientPart} . \text{Tumor}$

The **set of axioms** includes:

- GCIs $C \sqsubseteq D$

- Assertions: $C(a), \quad r(a, b)$

$$(\text{Tumor} \sqsubseteq \text{Tissue}) \quad (\exists \text{patientPart} . \text{Tumor})(p)$$

Semantics: $\mathcal{I} = \langle \Delta, \cdot^{\mathcal{I}} \rangle$

The description logic \mathcal{EL}^+

Vocabulary $\langle N_C, N_R, N_I \rangle$ of concept, role, individual names

Syntax:

The **set of concepts** is given by

$$C ::= \top \mid \perp \mid A \mid C_1 \sqcap C_2 \mid \exists r . C$$

With $A \in N_C, r \in N_R$

Semantics: $\mathcal{I} = \langle \Delta, \cdot^{\mathcal{I}} \rangle$

Tissue

Process \sqcap Tissue

$\exists \text{patientPart} . \text{Tumor}$

The **set of axioms** includes:

- GCIs $C \sqsubseteq D$

- Assertions: $C(a), r(a, b)$

$(\text{Tumor} \sqsubseteq \text{Tissue}) \quad (\exists \text{patientPart} . \text{Tumor})(p)$

The description logic \mathcal{EL}^+

Vocabulary $\langle N_C, N_R, N_I \rangle$ of concept, role, individual names

Syntax:

The **set of concepts** is given by

$$C ::= \top \mid \perp \mid A \mid C_1 \sqcap C_2 \mid \exists r . C \mid \exists r . \text{Self}$$

With $A \in N_C, r \in N_R$

Tissue	
Process \sqcap Tissue	$\exists \text{patientPart} . \text{Tumor}$

The **set of axioms** includes:

- GCIs $C \sqsubseteq D$
- Assertions: $C(a), r(a, b)$

($\text{Tumor} \sqsubseteq \text{Tissue}$)	($\exists \text{patientPart} . \text{Tumor})(p)$
--	---

Semantics: $\mathcal{I} = \langle \Delta, \cdot^{\mathcal{I}} \rangle$

The description logic \mathcal{EL}^+

Vocabulary $\langle N_C, N_R, N_I \rangle$ of concept, role, individual names

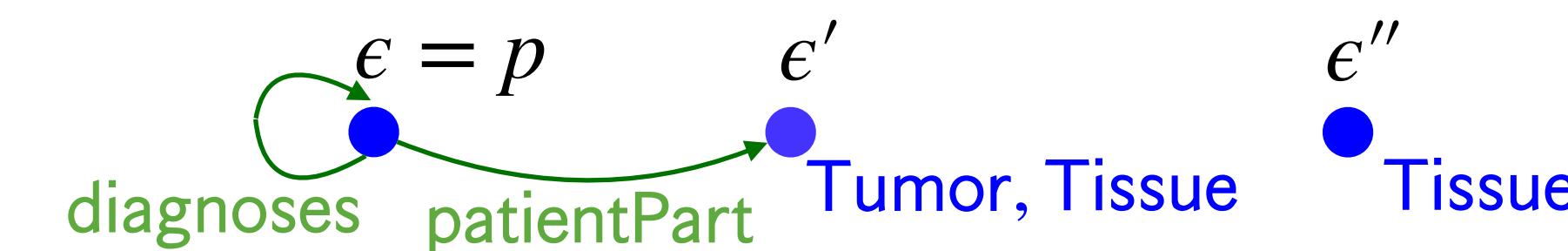
Syntax:

The **set of concepts** is given by

$C ::= \top \mid \perp \mid A \mid C_1 \sqcap C_2 \mid \exists r . C \mid \exists r . \text{Self}$

With $A \in N_C, r \in N_R$

Tissue $\exists \text{diagnoses} . \text{Self}$


Process \sqcap Tissue $\exists \text{patientPart} . \text{Tumor}$

The **set of axioms** includes:

- GCIs $C \sqsubseteq D$

- Assertions: $C(a), r(a, b)$

Semantics: $\mathcal{I} = \langle \Delta, \cdot^{\mathcal{I}} \rangle$

$(\text{Tumor} \sqsubseteq \text{Tissue}) \quad (\exists \text{patientPart} . \text{Tumor})(p)$

The description logic \mathcal{EL}^+

Vocabulary $\langle N_C, N_R, N_I \rangle$ of concept, role, individual names

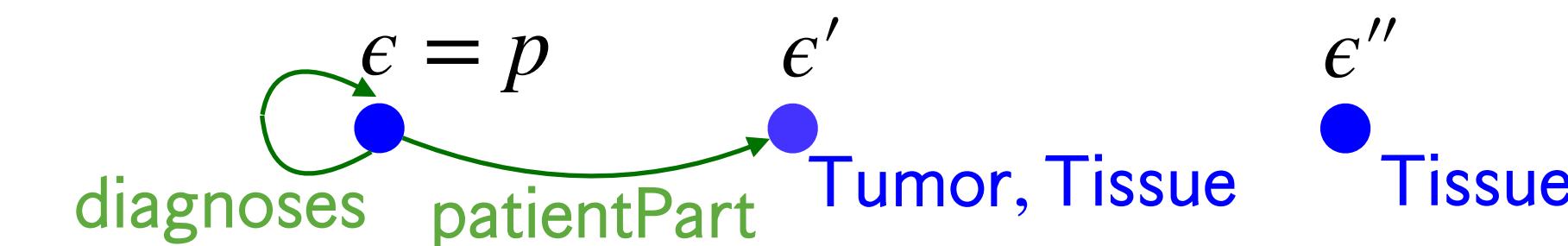
Syntax:

The **set of concepts** is given by

$$C ::= \top \mid \perp \mid A \mid C_1 \sqcap C_2 \mid \exists r . C \mid \exists r . \text{Self}$$

With $A \in N_C, r \in N_R$

Tissue $\exists \text{diagnoses} . \text{Self}$


Process \sqcap Tissue $\exists \text{patientPart} . \text{Tumor}$

The **set of axioms** includes:

- GCIs and RIAs: $C \sqsubseteq D, R_1 \circ \dots \circ R_n \sqsubseteq R$
- Assertions: $C(a), r(a, b)$

$(\text{Tumor} \sqsubseteq \text{Tissue})$

Semantics: $\mathcal{I} = \langle \Delta, \cdot^{\mathcal{I}} \rangle$

The description logic \mathcal{EL}^+

Vocabulary $\langle N_C, N_R, N_I \rangle$ of concept, role, individual names

Syntax:

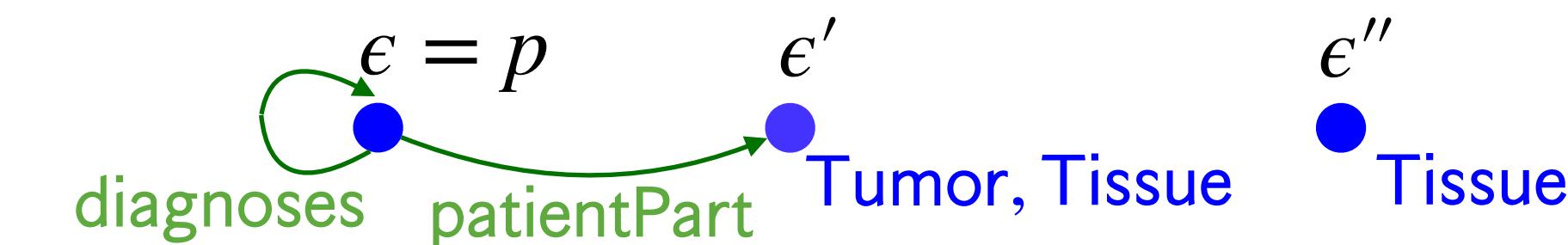
The **set of concepts** is given by

$C ::= \top \mid \perp \mid A \mid C_1 \sqcap C_2 \mid \exists r . C \mid \exists r . \text{Self}$

With $A \in N_C, r \in N_R$

Tissue $\exists \text{diagnoses} . \text{Self}$

Process \sqcap Tissue $\exists \text{patientPart} . \text{Tumor}$


The **set of axioms** includes:

- GCIs and RIAs: $C \sqsubseteq D, R_1 \circ \dots \circ R_n \sqsubseteq R$
- Assertions: $C(a), r(a, b)$

$(\text{Tumor} \sqsubseteq \text{Tissue})$

$(\text{patientPart} \circ \text{hasPart} \sqsubseteq \text{patientPart})$

Semantics: $\mathcal{I} = \langle \Delta, \cdot^{\mathcal{I}} \rangle$

The description logic \mathcal{EL}^+

Vocabulary $\langle N_C, N_R, N_I \rangle$ of concept, role, individual names

Syntax:

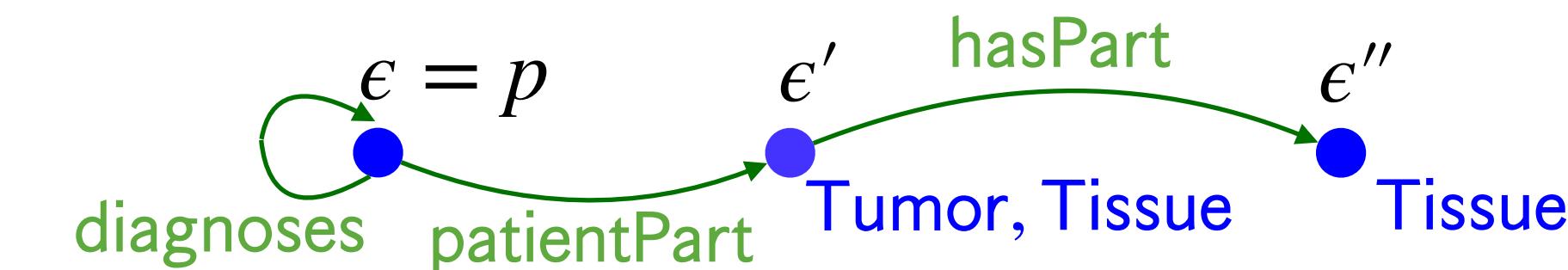
The **set of concepts** is given by

$C ::= \top \mid \perp \mid A \mid C_1 \sqcap C_2 \mid \exists r . C \mid \exists r . \text{Self}$

With $A \in N_C, r \in N_R$

Tissue $\exists \text{diagnoses} . \text{Self}$

Process \sqcap Tissue $\exists \text{patientPart} . \text{Tumor}$


The **set of axioms** includes:

- GCIs and RIAs: $C \sqsubseteq D, R_1 \circ \dots \circ R_n \sqsubseteq R$
- Assertions: $C(a), r(a, b)$

$(\text{Tumor} \sqsubseteq \text{Tissue})$

$(\text{patientPart} \circ \text{hasPart} \sqsubseteq \text{patientPart})$

Semantics: $\mathcal{I} = \langle \Delta, \cdot^{\mathcal{I}} \rangle$

The description logic \mathcal{EL}^+

Vocabulary $\langle N_C, N_R, N_I \rangle$ of concept, role, individual names

Syntax:

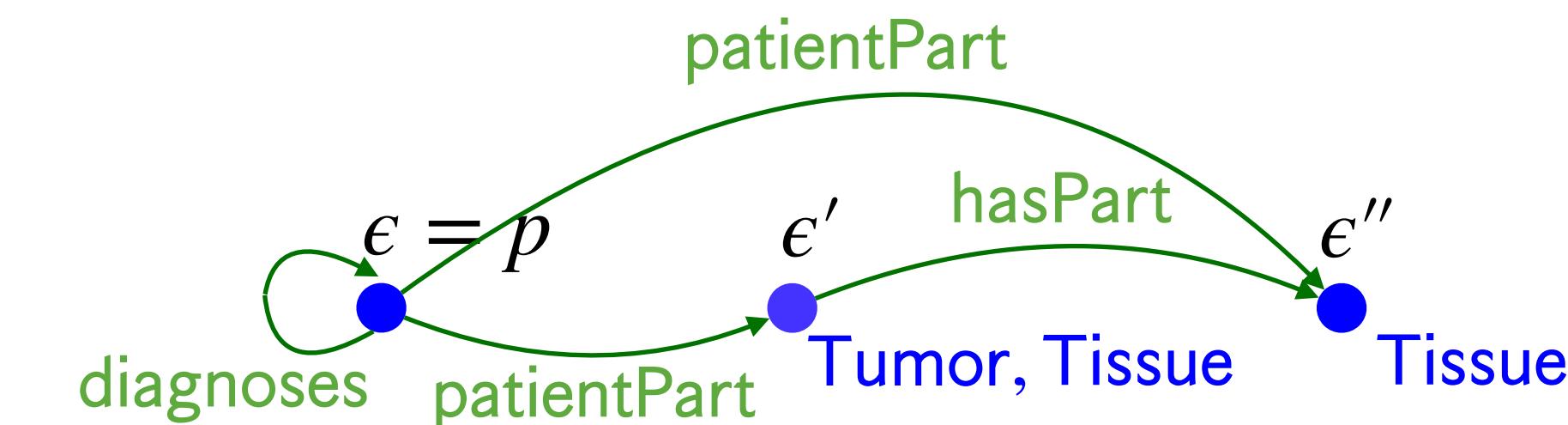
The **set of concepts** is given by

$C ::= \top \mid \perp \mid A \mid C_1 \sqcap C_2 \mid \exists r . C \mid \exists r . \text{Self}$

With $A \in N_C, r \in N_R$

Tissue $\exists \text{diagnoses} . \text{Self}$

Process \sqcap Tissue $\exists \text{patientPart} . \text{Tumor}$


The **set of axioms** includes:

- GCIs and RIAs: $C \sqsubseteq D, R_1 \circ \dots \circ R_n \sqsubseteq R$
- Assertions: $C(a), r(a, b)$

$(\text{Tumor} \sqsubseteq \text{Tissue})$

$(\text{patientPart} \circ \text{hasPart} \sqsubseteq \text{patientPart})$

Semantics: $\mathcal{I} = \langle \Delta, \cdot^{\mathcal{I}} \rangle$

Towards Standpoint- \mathcal{EL}^+

Vocabulary $\langle N_C, N_R, N_I \rangle$ of concept, role, individual

Syntax:

The **set of concepts** is given by

$$C ::= \top \mid \perp \mid A \mid C_1 \sqcap C_2 \mid \exists r . C \mid \exists r . \text{Self}$$

With $A \in N_C, r \in N_R$

Tissue $\exists \text{diagnoses} . \text{Self}$

Process \sqcap Tissue $\exists \text{patientPart} . \text{Tumor}$

The **set of axioms** includes:

- GCIs and RIAs: $C \sqsubseteq D, R_1 \circ \dots \circ R_n \sqsubseteq R$
- Assertions: $C(a), r(a, b)$

$(\text{Tumor} \sqsubseteq \text{Tissue}) \quad (\exists \text{patientPart} . \text{Tumor})(p)$

Towards Standpoint- \mathcal{EL}^+

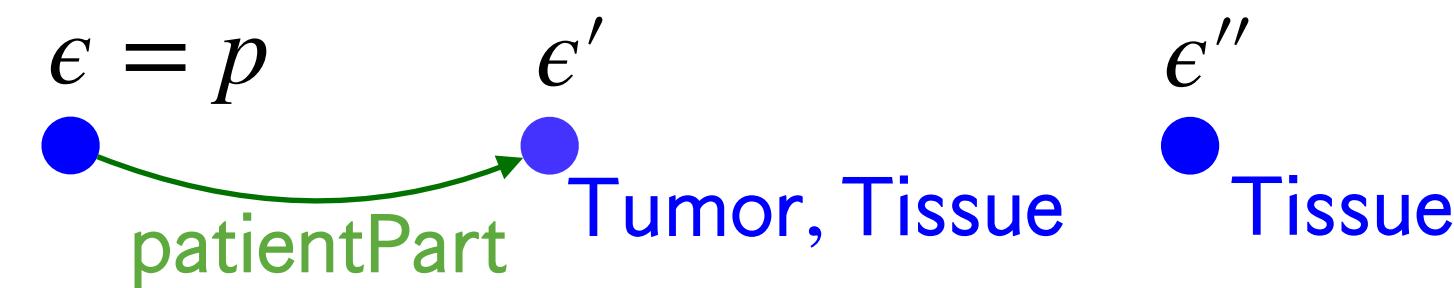
Vocabulary $\langle N_C, N_R, N_I, N_S \rangle$ of concept, role, individual and **standpoint names**

Syntax:

The **set of concepts** is given by

$$C ::= \top \mid \perp \mid A \mid C_1 \sqcap C_2 \mid \exists r . C \mid \exists r . \text{Self}$$

With $A \in N_C, r \in N_R$


Tissue $\exists \text{diagnoses} . \text{Self}$

Process \sqcap Tissue $\exists \text{patientPart} . \text{Tumor}$

The **set of axioms** includes:

- GCIs and RIAs: $C \sqsubseteq D, R_1 \circ \dots \circ R_n \sqsubseteq R$
- Assertions: $C(a), r(a, b)$

$(\text{Tumor} \sqsubseteq \text{Tissue})$ $(\exists \text{patientPart} . \text{Tumor})(p)$

Towards Standpoint- \mathcal{EL}^+

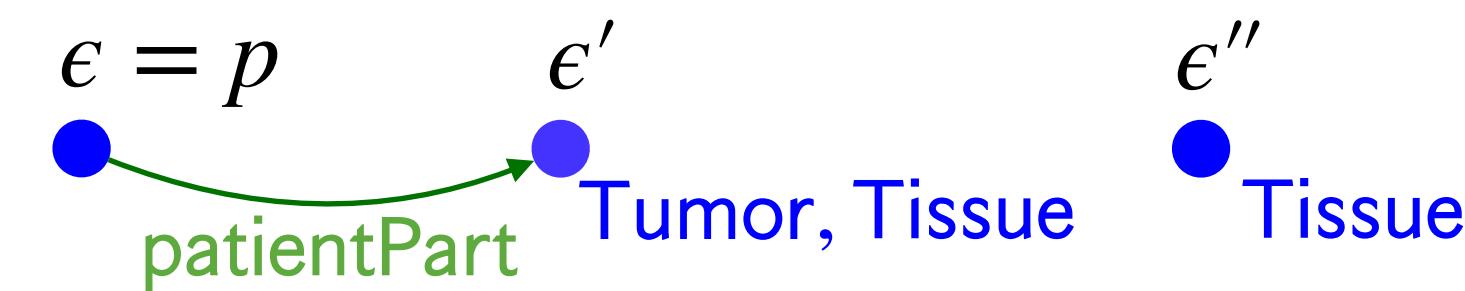
Vocabulary $\langle N_C, N_R, N_I, N_S \rangle$ of concept, role, individual and **standpoint names**, $* \in N_S$ (universal standpoint).

Syntax:

The **set of concepts** is given by

$$C ::= \top \mid \perp \mid A \mid C_1 \sqcap C_2 \mid \exists r . C \mid \exists r . \text{Self}$$

With $A \in N_C, r \in N_R$


Tissue $\exists \text{diagnoses} . \text{Self}$

Process \sqcap Tissue $\exists \text{patientPart} . \text{Tumor}$

The **set of axioms** includes:

- GCIs and RIAs: $C \sqsubseteq D, R_1 \circ \dots \circ R_n \sqsubseteq R$
- Assertions: $C(a), r(a, b)$

$(\text{Tumor} \sqsubseteq \text{Tissue}) \quad (\exists \text{patientPart} . \text{Tumor})(p)$

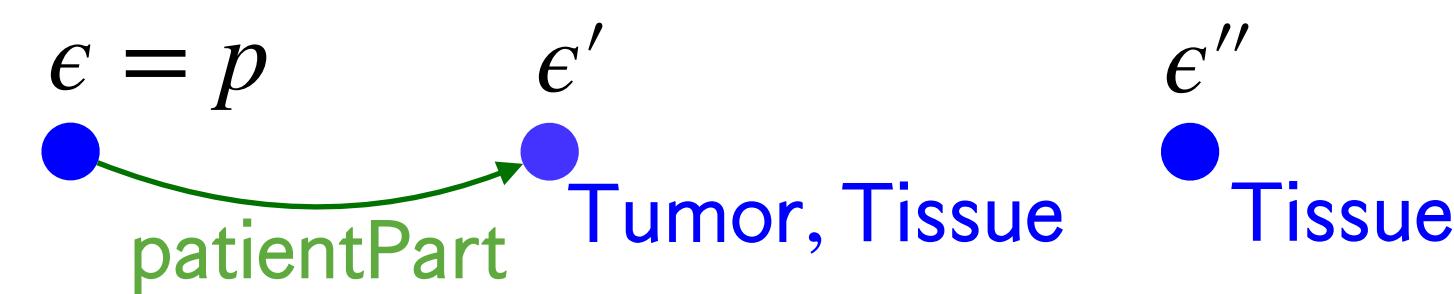
Towards Standpoint- \mathcal{EL}^+

Vocabulary $\langle N_C, N_R, N_I, N_S \rangle$ of concept, role, individual and **standpoint names**, $* \in N_S$ (universal standpoint).

Syntax:

The **set of concepts** is given by

$$C ::= \top \mid \perp \mid A \mid C_1 \sqcap C_2 \mid \exists r . C \mid \exists r . \text{Self} \mid \odot_s C$$


With $A \in N_C, r \in N_R, s \in N_S, \odot \in \{ \Box, \Diamond \}$.

Tissue $\exists \text{diagnoses} . \text{Self}$

Process \sqcap Tissue $\exists \text{patientPart} . \text{Tumor}$

The **set of axioms** includes:

- GCIs and RIAs: $C \sqsubseteq D, R_1 \circ \dots \circ R_n \sqsubseteq R$
- Assertions: $C(a), r(a, b)$

$(\text{Tumor} \sqsubseteq \text{Tissue}) \quad (\exists \text{patientPart} . \text{Tumor})(p)$

Towards Standpoint- \mathcal{EL}^+

Vocabulary $\langle N_C, N_R, N_I, N_S \rangle$ of concept, role, individual and **standpoint names**, $* \in N_S$ (universal standpoint).

Syntax:

The **set of concepts** is given by

$$C ::= \top \mid \perp \mid A \mid C_1 \sqcap C_2 \mid \exists r . C \mid \exists r . \text{Self} \mid \odot_s C$$

With $A \in N_C, r \in N_R, s \in N_S, \odot \in \{ \Box, \Diamond \}$.

Tissue	$\exists \text{diagnoses} . \text{Self}$	\Diamond_s Process
Process \sqcap Tissue	$\exists \text{patientPart} . \text{Tumor}$	

The **set of axioms** includes:

- GCIs and RIAs: $C \sqsubseteq D, R_1 \circ \dots \circ R_n \sqsubseteq R$
- Assertions: $C(a), r(a, b)$

(Tumor \sqsubseteq Tissue)	($\exists \text{patientPart} . \text{Tumor})(p)$
------------------------------	---

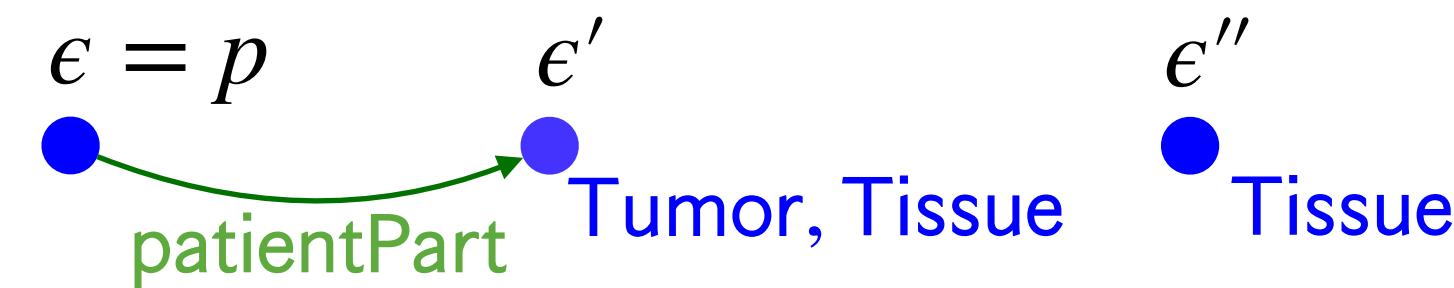
Towards Standpoint- \mathcal{EL}^+

Vocabulary $\langle N_C, N_R, N_I, N_S \rangle$ of concept, role, individual and **standpoint names**, $* \in N_S$ (universal standpoint).

Syntax:

The **set of concepts** is given by

$$C ::= \top \mid \perp \mid A \mid C_1 \sqcap C_2 \mid \exists r . C \mid \exists r . \text{Self} \mid \odot_s C$$


With $A \in N_C, r \in N_R, s \in N_S, \odot \in \{ \Box, \Diamond \}$.

Tissue	$\exists \text{diagnoses} . \text{Self}$	$\Diamond_s \text{ Process}$
Process \sqcap Tissue	$\exists \text{patientPart} . \text{Tumor}$	

Formulas are $\odot_s (\lambda_1 \wedge \dots \wedge \lambda_n)$ for $\lambda_i \in \{\mathcal{E}, \neg \mathcal{E}\}, \mathcal{E}$:

- GCIs and RIAs: $C \sqsubseteq D, R_1 \circ \dots \circ R_n \sqsubseteq R$
- Assertions: $C(a), r(a, b)$

$$\Box_L ((\text{Tumor} \sqsubseteq \text{Tissue}) \wedge \neg (\exists \text{patientPart} . \text{Tumor})(p))$$

Towards Standpoint- \mathcal{EL}^+

Vocabulary $\langle N_C, N_R, N_I, N_S \rangle$ of concept, role, individual and **standpoint names**, $* \in N_S$ (universal standpoint).

Syntax:

The **set of concepts** is given by

$$C ::= \top \mid \perp \mid A \mid C_1 \sqcap C_2 \mid \exists r . C \mid \exists r . \text{Self} \mid \odot_s C$$

With $A \in N_C, r \in N_R, s \in N_S, \odot \in \{ \Box, \Diamond \}$.

Formulas are $\odot_s (\lambda_1 \wedge \dots \wedge \lambda_n)$ for $\lambda_i \in \{\mathcal{E}, \neg \mathcal{E}\}, \mathcal{E}:$

- GCIs and RIAs: $C \sqsubseteq D, R_1 \circ \dots \circ R_n \sqsubseteq R$
- Assertions: $C(a), r(a, b)$

$$\Box_L ((\text{Tumor} \sqsubseteq \text{Tissue}) \wedge \neg (\exists \text{patientPart} . \text{Tumor})(p))$$

Semantics: $\mathcal{D} = \langle \Delta, \Pi, \sigma, \gamma \rangle$

Towards Standpoint- \mathcal{EL}^+

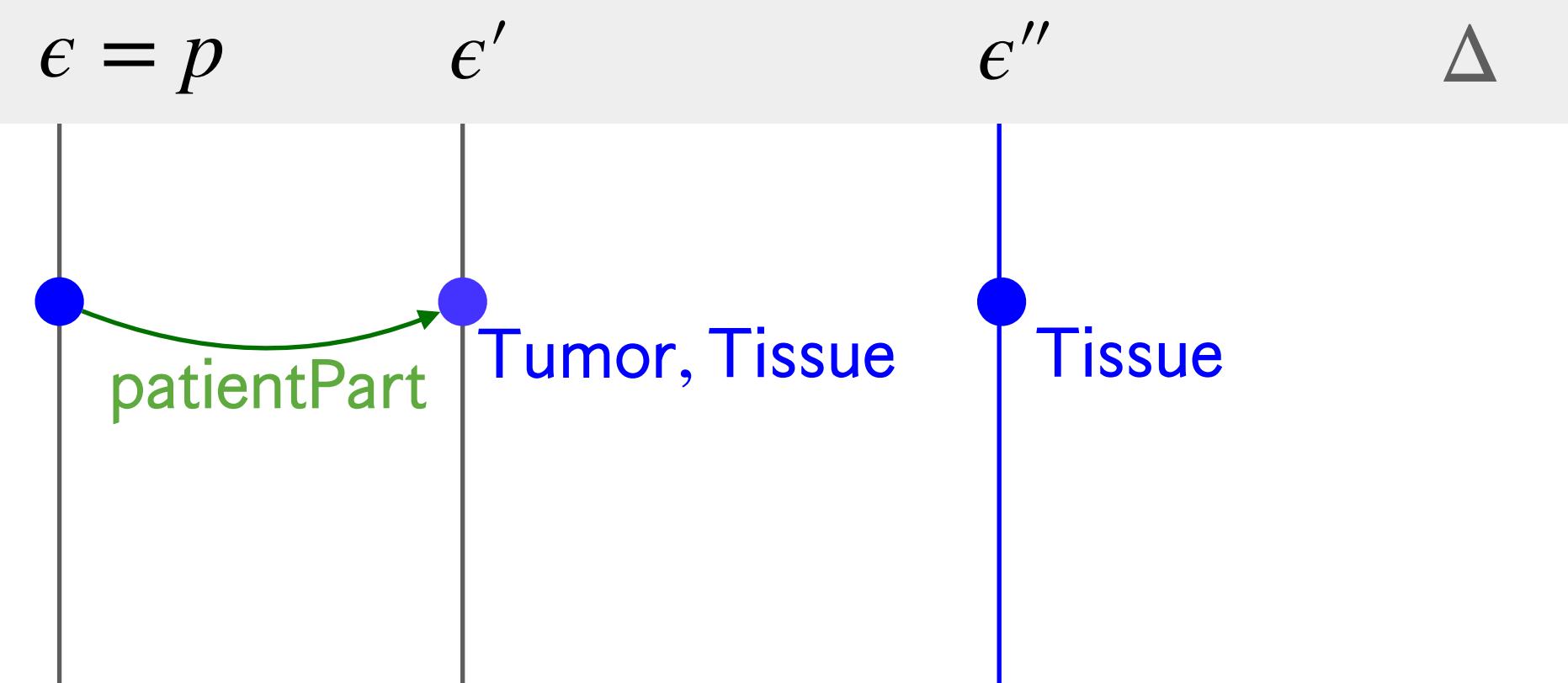
Vocabulary $\langle N_C, N_R, N_I, N_S \rangle$ of concept, role, individual and **standpoint names**, $* \in N_S$ (universal standpoint).

Syntax:

The **set of concepts** is given by

$$C ::= \top \mid \perp \mid A \mid C_1 \sqcap C_2 \mid \exists r . C \mid \exists r . \text{Self} \mid \odot_s C$$

With $A \in N_C, r \in N_R, s \in N_S, \odot \in \{ \Box, \Diamond \}$.


Tissue	$\exists \text{diagnoses} . \text{Self}$	$\Diamond_s \text{ Process}$
Process \sqcap Tissue	$\exists \text{patientPart} . \text{Tumor}$	

Formulas are $\odot_s (\lambda_1 \wedge \dots \wedge \lambda_n)$ for $\lambda_i \in \{\mathcal{E}, \neg \mathcal{E}\}$, \mathcal{E} :

- GCIs and RIAs: $C \sqsubseteq D, R_1 \circ \dots \circ R_n \sqsubseteq R$
- Assertions: $C(a), r(a, b)$

$$\Box_L ((\text{Tumor} \sqsubseteq \text{Tissue}) \wedge \neg (\exists \text{patientPart} . \text{Tumor})(p))$$

Semantics: $\mathcal{D} = \langle \Delta, \Pi, \sigma, \gamma \rangle$

Towards Standpoint- \mathcal{EL}^+

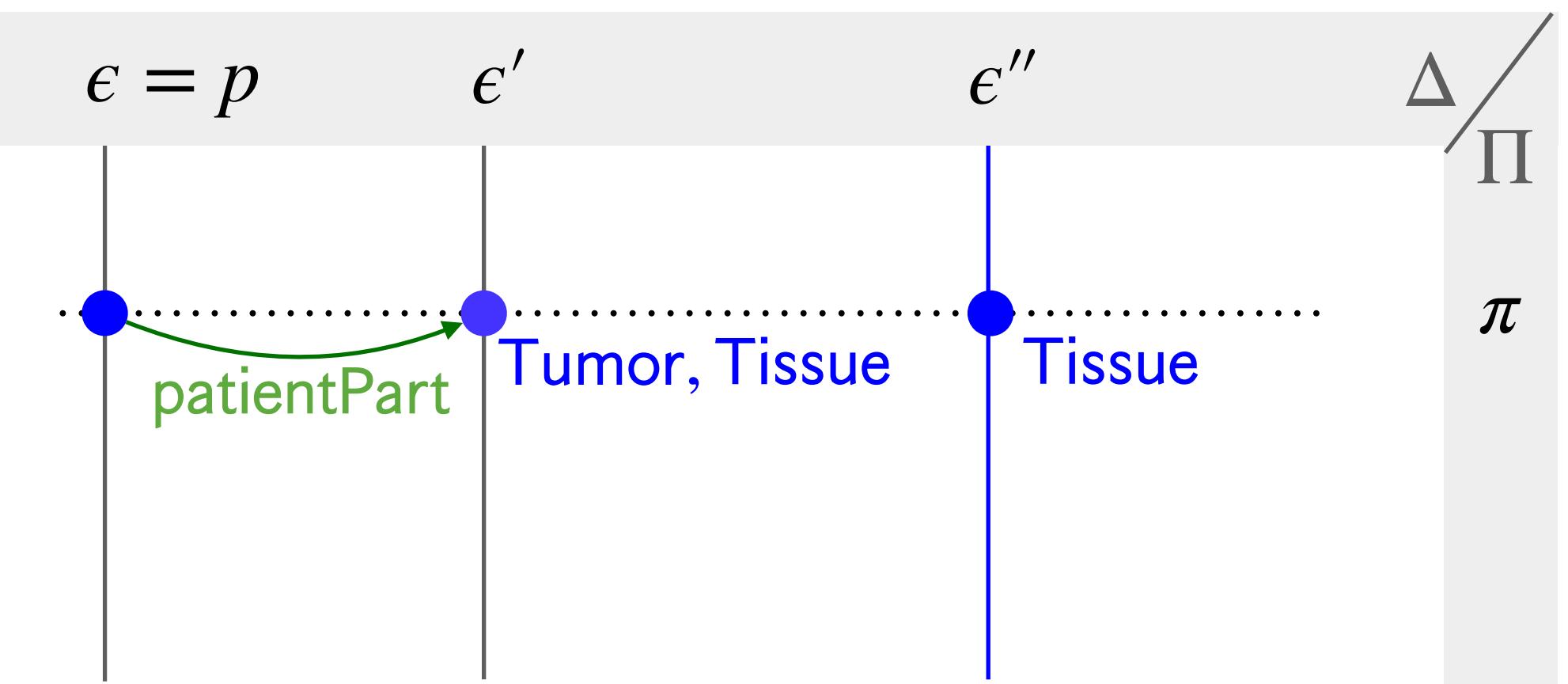
Vocabulary $\langle N_C, N_R, N_I, N_S \rangle$ of concept, role, individual and **standpoint names**, $* \in N_S$ (universal standpoint).

Syntax:

The **set of concepts** is given by

$$C ::= \top \mid \perp \mid A \mid C_1 \sqcap C_2 \mid \exists r . C \mid \exists r . \text{Self} \mid \odot_s C$$

With $A \in N_C, r \in N_R, s \in N_S, \odot \in \{ \Box, \Diamond \}$.


Tissue	$\exists \text{diagnoses} . \text{Self}$	$\Diamond_s \text{Process}$
Process \sqcap Tissue	$\exists \text{patientPart} . \text{Tumor}$	

Formulas are $\odot_s (\lambda_1 \wedge \dots \wedge \lambda_n)$ for $\lambda_i \in \{\mathcal{E}, \neg \mathcal{E}\}$, \mathcal{E} :

- GCIs and RIAs: $C \sqsubseteq D, R_1 \circ \dots \circ R_n \sqsubseteq R$
- Assertions: $C(a), r(a, b)$

$\Box_L ((\text{Tumor} \sqsubseteq \text{Tissue}) \wedge \neg (\exists \text{patientPart} . \text{Tumor})(p))$
--

Semantics: $\mathcal{D} = \langle \Delta, \Pi, \sigma, \gamma \rangle$

Towards Standpoint- \mathcal{EL}^+

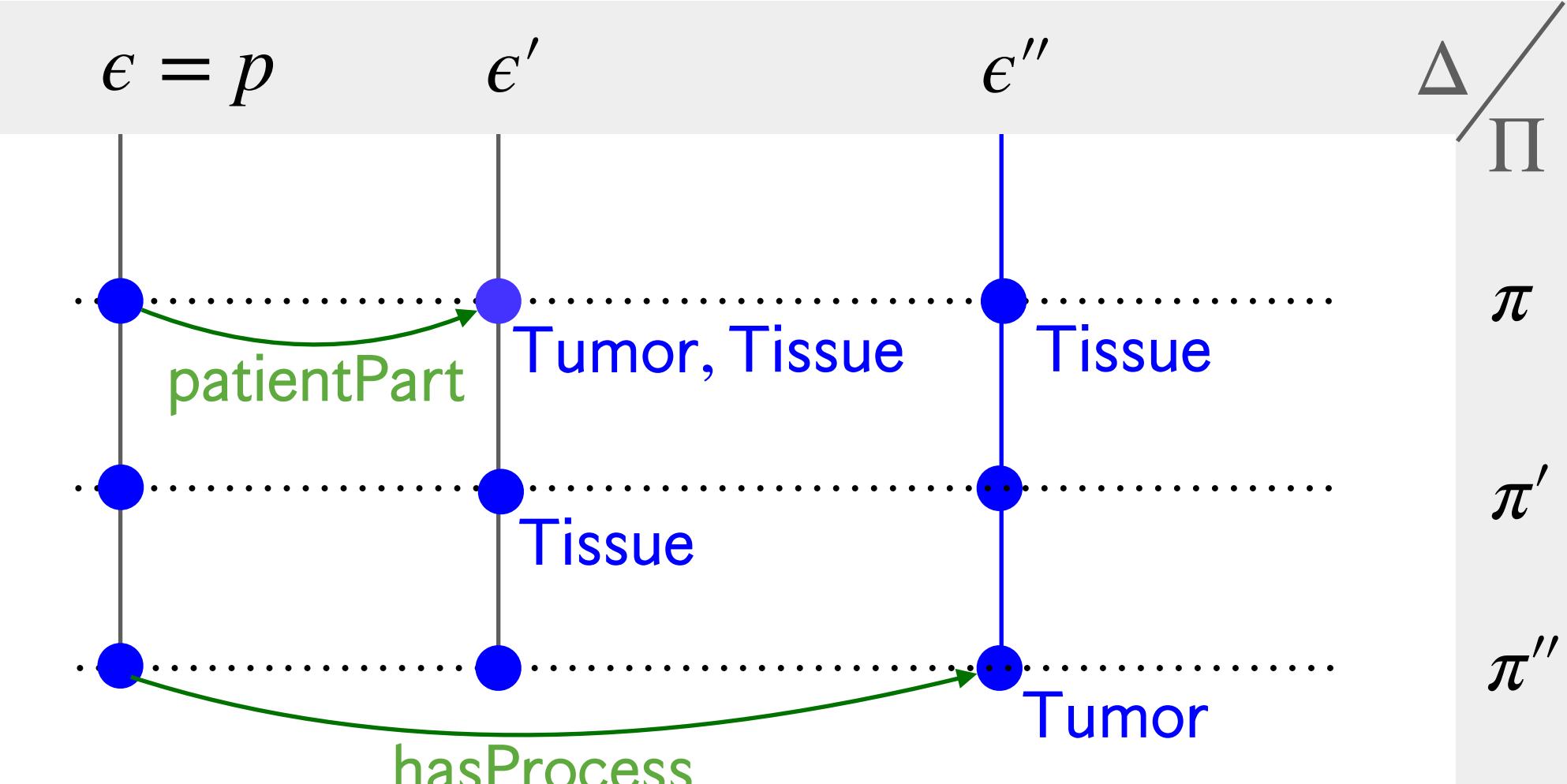
Vocabulary $\langle N_C, N_R, N_I, N_S \rangle$ of concept, role, individual and **standpoint names**, $* \in N_S$ (universal standpoint).

Syntax:

The **set of concepts** is given by

$$C ::= \top \mid \perp \mid A \mid C_1 \sqcap C_2 \mid \exists r . C \mid \exists r . \text{Self} \mid \odot_s C$$

With $A \in N_C, r \in N_R, s \in N_S, \odot \in \{ \Box, \Diamond \}$.


Tissue	$\exists \text{diagnoses} . \text{Self}$	$\Diamond_s \text{ Process}$
Process \sqcap Tissue	$\exists \text{patientPart} . \text{Tumor}$	

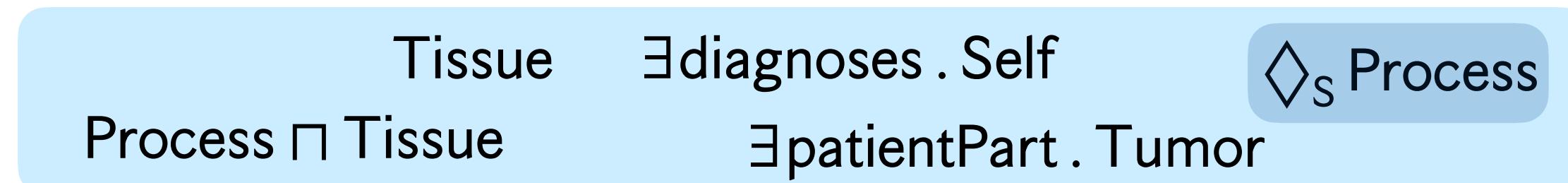
Formulas are $\odot_s (\lambda_1 \wedge \dots \wedge \lambda_n)$ for $\lambda_i \in \{\mathcal{E}, \neg \mathcal{E}\}$, \mathcal{E} :

- GCIs and RIAs: $C \sqsubseteq D, R_1 \circ \dots \circ R_n \sqsubseteq R$
- Assertions: $C(a), r(a, b)$

$$\Box_L ((\text{Tumor} \sqsubseteq \text{Tissue}) \wedge \neg (\exists \text{patientPart} . \text{Tumor})(p))$$

Semantics: $\mathcal{D} = \langle \Delta, \Pi, \sigma, \gamma \rangle$

Towards Standpoint- \mathcal{EL}^+

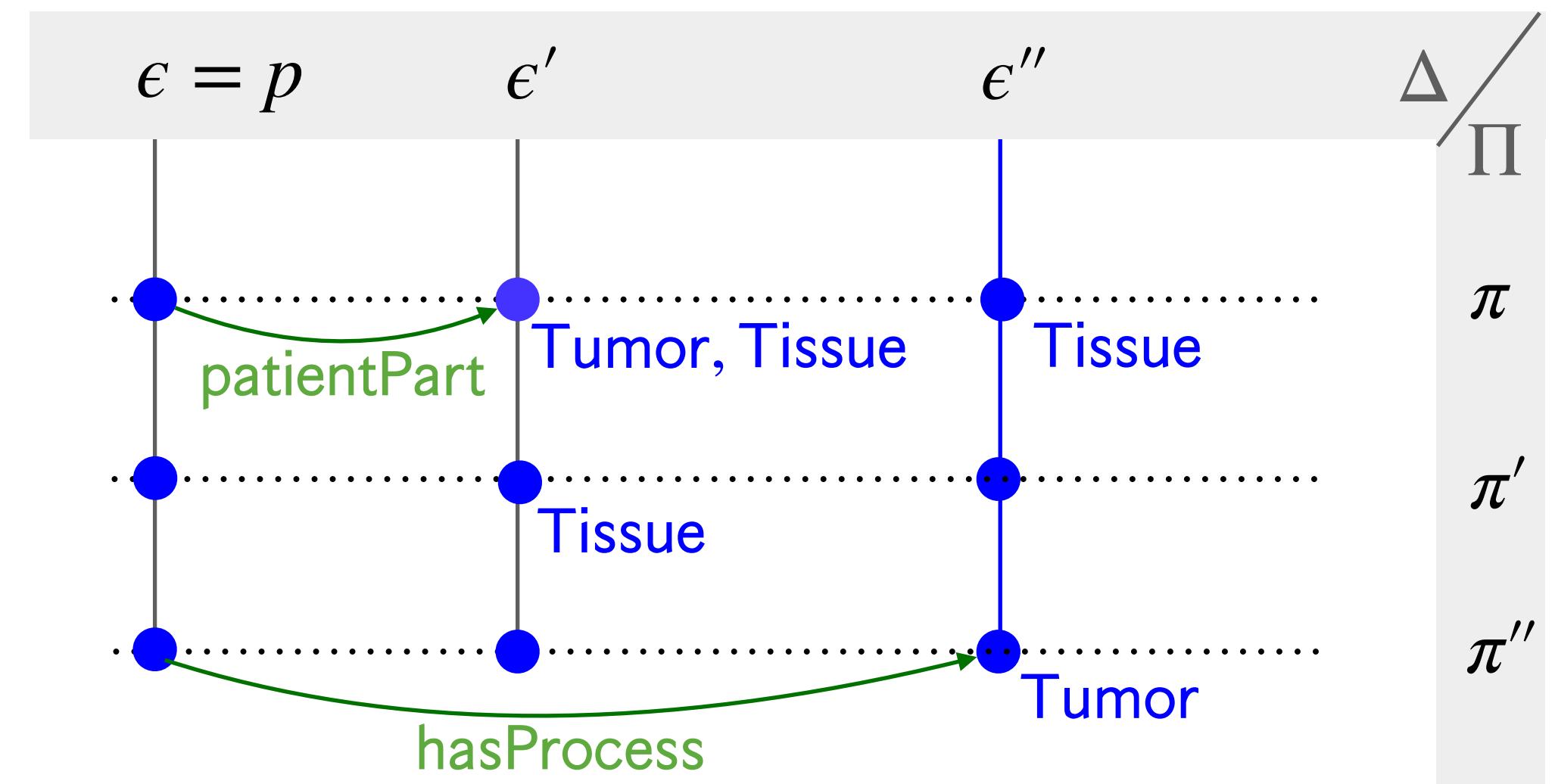

Vocabulary $\langle N_C, N_R, N_I, N_S \rangle$ of concept, role, individual and **standpoint names**, $* \in N_S$ (universal standpoint).

Syntax:

The **set of concepts** is given by

$$C ::= \top \mid \perp \mid A \mid C_1 \sqcap C_2 \mid \exists r. C \mid \exists r. \text{Self} \mid \odot_s C$$

With $A \in N_C, r \in N_R, s \in N_S, \odot \in \{ \Box, \Diamond \}$.


Formulas are $\odot_s (\lambda_1 \wedge \dots \wedge \lambda_n)$ for $\lambda_i \in \{\mathcal{E}, \neg \mathcal{E}\}$, \mathcal{E} :

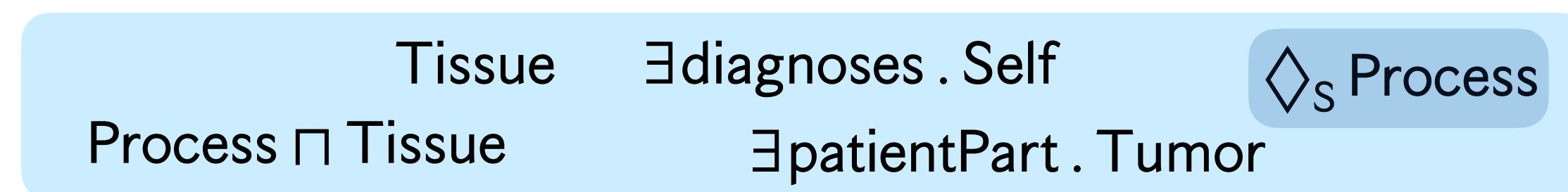
- GCIs and RIAs: $C \sqsubseteq D, R_1 \circ \dots \circ R_n \sqsubseteq R$
- Assertions: $C(a), r(a, b)$

$$\Box_L ((\text{Tumor} \sqsubseteq \text{Tissue}) \wedge \neg (\exists \text{patientPart} . \text{Tumor})(p))$$

Semantics: $\mathcal{D} = \langle \Delta, \Pi, \sigma, \gamma \rangle$

- γ maps each $\pi \in \Pi$ to an \mathcal{EL}^+ interpretation $\mathcal{I} = \langle \Delta, \cdot^\mathcal{I} \rangle$

Towards Standpoint- \mathcal{EL}^+

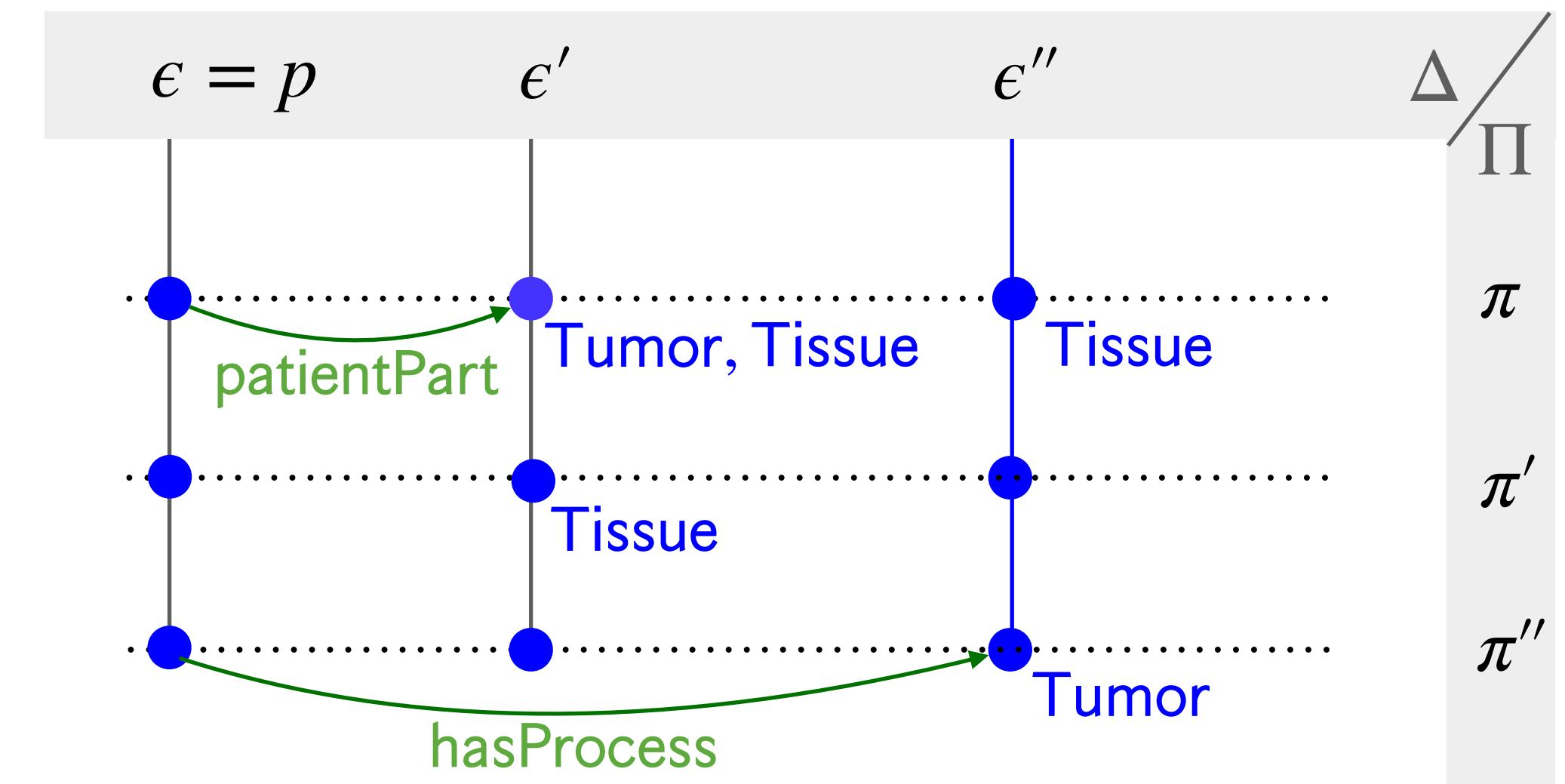

Vocabulary $\langle N_C, N_R, N_I, N_S \rangle$ of concept, role, individual and **standpoint names**, $* \in N_S$ (universal standpoint).

Syntax:

The **set of concepts** is given by

$$C ::= \top \mid \perp \mid A \mid C_1 \sqcap C_2 \mid \exists r . C \mid \exists r . \text{Self} \mid \odot_s C$$

With $A \in N_C, r \in N_R, s \in N_S, \odot \in \{ \square, \diamond \}$.


Formulas are $\odot_s (\lambda_1 \wedge \dots \wedge \lambda_n)$ for $\lambda_i \in \{\mathcal{E}, \neg \mathcal{E}\}$, \mathcal{E} :

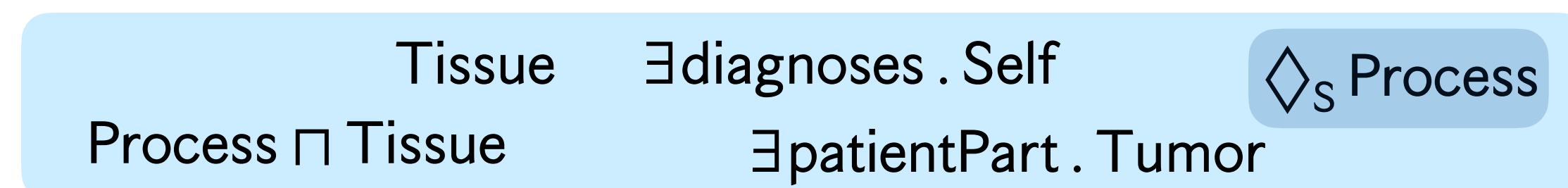
- GCIs and RIAs: $C \sqsubseteq D, R_1 \circ \dots \circ R_n \sqsubseteq R$
- Assertions: $C(a), r(a, b)$

$$\square_L ((\text{Tumor} \sqsubseteq \text{Tissue}) \wedge \neg (\exists \text{patientPart} . \text{Tumor})(p))$$

Semantics: $\mathcal{D} = \langle \Delta, \Pi, \sigma, \gamma \rangle$

- γ maps each $\pi \in \Pi$ to an \mathcal{EL}^+ interpretation $\mathcal{I} = \langle \Delta, \cdot^\mathcal{I} \rangle$
- σ maps each $s \in N_S$ to a subset of Π

Towards Standpoint- \mathcal{EL}^+

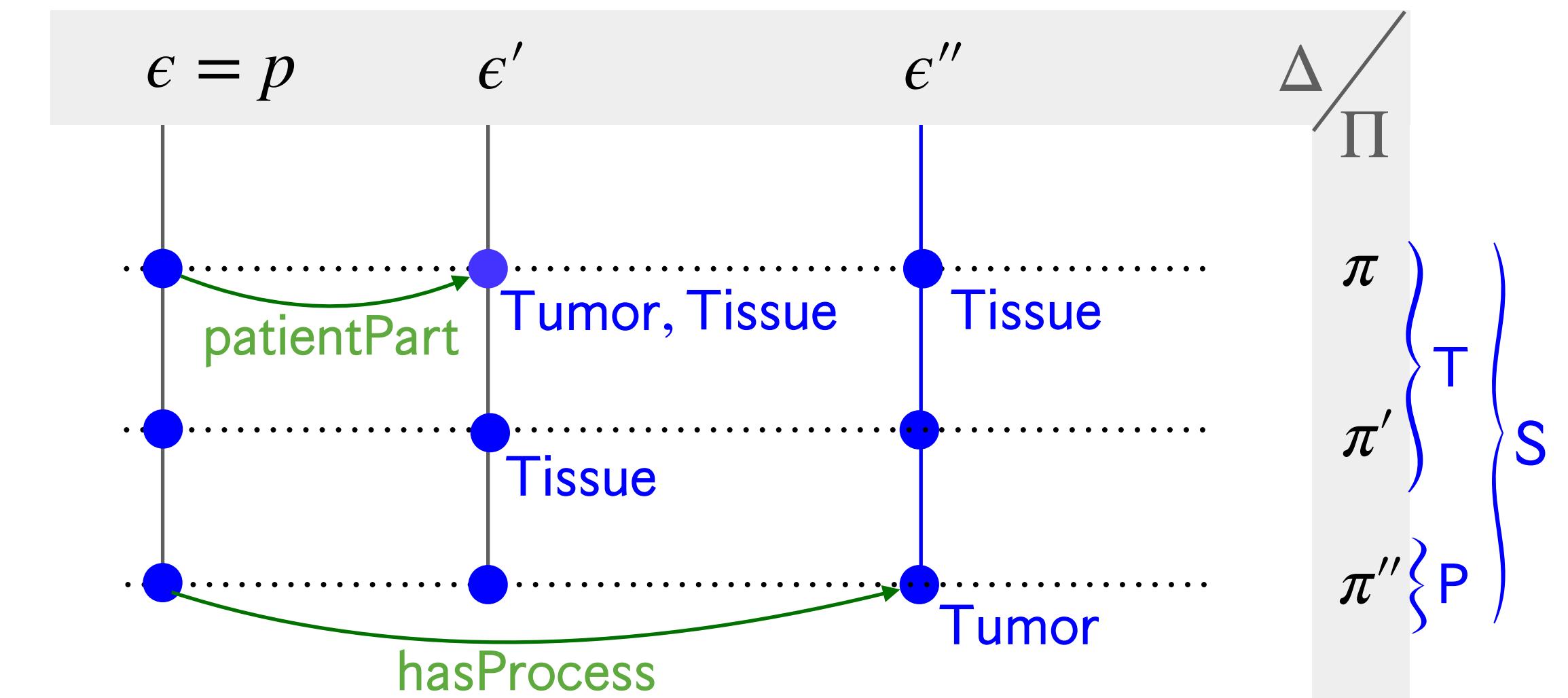

Vocabulary $\langle N_C, N_R, N_I, N_S \rangle$ of concept, role, individual and **standpoint names**, $* \in N_S$ (universal standpoint).

Syntax:

The **set of concepts** is given by

$C ::= \top \mid \perp \mid A \mid C_1 \sqcap C_2 \mid \exists r . C \mid \exists r . \text{Self} \mid \odot_s C$

With $A \in N_C, r \in N_R, s \in N_S, \odot \in \{ \square, \diamond \}$.


Formulas are $\odot_s (\lambda_1 \wedge \dots \wedge \lambda_n)$ for $\lambda_i \in \{\mathcal{E}, \neg \mathcal{E}\}$, \mathcal{E} :

- GCIs and RIAs: $C \sqsubseteq D, R_1 \circ \dots \circ R_n \sqsubseteq R$
- Assertions: $C(a), r(a, b)$

$\square_L ((\text{Tumor} \sqsubseteq \text{Tissue}) \wedge \neg (\exists \text{patientPart} . \text{Tumor})(p))$

Semantics: $\mathcal{D} = \langle \Delta, \Pi, \sigma, \gamma \rangle$

- γ maps each $\pi \in \Pi$ to an \mathcal{EL}^+ interpretation $\mathcal{I} = \langle \Delta, \cdot^\mathcal{I} \rangle$
- σ maps each $s \in N_S$ to a subset of Π

Complexity and Automated Reasoning

Tractable Reasoning in $\mathcal{S}_{\mathcal{EL}^+}$

Tractable Reasoning in $\mathbb{S}_{\mathcal{EL}^+}$

Many sentential fragments of FOL (including DLs) enhanced with SL preserve the complexity of the fragment.

How to Agree to Disagree: Managing Ontological Perspectives using Standpoint Logic

Lucía Gómez Álvarez, Sebastian Rudolph, Hannes Straß; (ISWC 2022)

Tractable Reasoning in $\mathcal{S}_{\mathcal{EL}^+}$

Many sentential fragments of FOL (including DLs) enhanced with SL preserve the complexity of the fragment.

How to Agree to Disagree: Managing Ontological Perspectives using Standpoint Logic

Lucía Gómez Álvarez, Sebastian Rudolph, Hannes Straß; (ISWC 2022)

Monodic modal extensions of DLs can lead to a blowup in complexity.

Tractable Reasoning in $\mathcal{S}_{\mathcal{EL}^+}$

Many sentential fragments of FOL (including DLs) enhanced with SL preserve the complexity of the fragment.

How to Agree to Disagree: Managing Ontological Perspectives using Standpoint Logic

Lucía Gómez Álvarez, Sebastian Rudolph, Hannes Straß; (ISWC 2022)

Monodic modal extensions of DLs can lead to a blowup in complexity.

Tractable Diversity: Scalable Multiperspective Ontology Management via Standpoint \mathcal{EL}

Lucía Gómez Álvarez, Sebastian Rudolph, Hannes Straß; (IJCAI 2023)

Tractable Reasoning in $\mathbb{S}_{\mathcal{EL}^+}$

Many sentential fragments of FOL (including DLs) enhanced with SL preserve the complexity of the fragment.

How to Agree to Disagree: Managing Ontological Perspectives using Standpoint Logic

Lucía Gómez Álvarez, Sebastian Rudolph, Hannes Straß; (ISWC 2022)

Monodic modal extensions of DLs can lead to a blowup in complexity.

Tractable Diversity: Scalable Multiperspective Ontology Management via Standpoint \mathcal{EL}

Lucía Gómez Álvarez, Sebastian Rudolph, Hannes Straß; (IJCAI 2023)

→ Complexity of the satisfiability of Standpoint- \mathcal{EL} → PTime

Tractable Reasoning in $\mathcal{S}_{\mathcal{EL}^+}$

Many sentential fragments of FOL (including DLs) enhanced with SL preserve the complexity of the fragment.

How to Agree to Disagree: Managing Ontological Perspectives using Standpoint Logic

Lucía Gómez Álvarez, Sebastian Rudolph, Hannes Straß; (ISWC 2022)

Monodic modal extensions of DLs can lead to a blowup in complexity.

Tractable Diversity: Scalable Multiperspective Ontology Management via Standpoint \mathcal{EL}

Lucía Gómez Álvarez, Sebastian Rudolph, Hannes Straß; (IJCAI 2023)

- Complexity of the satisfiability of Standpoint- \mathcal{EL} → PTime
- Tractability is easily lost:

Tractable Reasoning in $\mathcal{S}_{\mathcal{EL}^+}$

Many sentential fragments of FOL (including DLs) enhanced with SL preserve the complexity of the fragment.

How to Agree to Disagree: Managing Ontological Perspectives using Standpoint Logic

Lucía Gómez Álvarez, Sebastian Rudolph, Hannes Straß; (ISWC 2022)

Monodic modal extensions of DLs can lead to a blowup in complexity.

Tractable Diversity: Scalable Multiperspective Ontology Management via Standpoint \mathcal{EL}

Lucía Gómez Álvarez, Sebastian Rudolph, Hannes Straß; (IJCAI 2023)

- Complexity of the satisfiability of Standpoint- \mathcal{EL} → PTime
- Tractability is easily lost:
 - Empty standpoints → NP-hard

Tractable Reasoning in $\mathcal{S}_{\mathcal{EL}^+}$

Many sentential fragments of FOL (including DLs) enhanced with SL preserve the complexity of the fragment.

How to Agree to Disagree: Managing Ontological Perspectives using Standpoint Logic

Lucía Gómez Álvarez, Sebastian Rudolph, Hannes Straß; (ISWC 2022)

Monodic modal extensions of DLs can lead to a blowup in complexity.

Tractable Diversity: Scalable Multiperspective Ontology Management via Standpoint \mathcal{EL}

Lucía Gómez Álvarez, Sebastian Rudolph, Hannes Straß; (IJCAI 2023)

- Complexity of the satisfiability of Standpoint- \mathcal{EL} → PTime
- Tractability is easily lost:
 - Empty standpoints → NP-hard
 - Rigid roles → CoNP-hard

Tractable Reasoning in $\mathcal{S}_{\mathcal{EL}^+}$

Many sentential fragments of FOL (including DLs) enhanced with SL preserve the complexity of the fragment.

How to Agree to Disagree: Managing Ontological Perspectives using Standpoint Logic

Lucía Gómez Álvarez, Sebastian Rudolph, Hannes Straß; (ISWC 2022)

Monodic modal extensions of DLs can lead to a blowup in complexity.

Tractable Diversity: Scalable Multiperspective Ontology Management via Standpoint \mathcal{EL}

Lucía Gómez Álvarez, Sebastian Rudolph, Hannes Straß; (IJCAI 2023)

- Complexity of the satisfiability of Standpoint- \mathcal{EL} → PTime
- Tractability is easily lost:
 - Empty standpoints → NP-hard
 - Rigid roles → CoNP-hard
 - Nominal Concepts → ExpTime-hard

Tractable Reasoning in $\mathcal{S}_{\mathcal{EL}^+}$

Tractable Reasoning in $\mathcal{S}_{\mathcal{EL}^+}$

- We show that the expressivity can be pushed while preserving tractability

Tractable Reasoning in $\mathcal{S}_{\mathcal{EL}^+}$

- We show that the expressivity can be pushed while preserving tractability
 - Self loops, eg. $\Diamond_L (\Box_H (\exists \text{diagnoses} . \text{Self}) \sqsubseteq \exists \text{hasDiagnostic} . \text{Unsafe})$

Tractable Reasoning in $\mathcal{S}_{\mathcal{EL}^+}$

- We show that the expressivity can be pushed while preserving tractability
 - Self loops, eg. $\Diamond_L (\Box_H (\exists \text{diagnoses} . \text{Self}) \sqsubseteq \exists \text{hasDiagnostic} . \text{Unsafe})$
 - Role chain axioms, eg. $\Box_H (\text{patientPart} \circ \text{hasPart} \sqsubseteq \text{patientPart})$

Tractable Reasoning in $\mathbb{S}_{\mathcal{EL}^+}$

- We show that the expressivity can be pushed while preserving tractability
 - Self loops, eg. $\Diamond_L (\Box_H (\exists \text{diagnoses} . \text{Self}) \sqsubseteq \exists \text{hasDiagnostic} . \text{Unsafe})$
 - Role chain axioms, eg. $\Box_H (\text{patientPart} \circ \text{hasPart} \sqsubseteq \text{patientPart})$
 - Boolean combinations of formulas, eg. $\Diamond_H (\text{Tumor}(t) \wedge \text{patientPart}(p, t))$

Tractable Reasoning in $\mathbb{S}_{\mathcal{EL}^+}$

- We show that the expressivity can be pushed while preserving tractability
 - Self loops, eg. $\Diamond_L (\Box_H (\exists \text{diagnoses} . \text{Self}) \sqsubseteq \exists \text{hasDiagnostic} . \text{Unsafe})$
 - Role chain axioms, eg. $\Box_H (\text{patientPart} \circ \text{hasPart} \sqsubseteq \text{patientPart})$
 - Boolean combinations of formulas, eg. $\Diamond_H (\text{Tumor}(t) \wedge \text{patientPart}(p, t))$
- We provide a decision calculus for $\mathbb{S}_{\mathcal{EL}^+}$

Tractable Reasoning in $\mathbb{S}_{\mathcal{EL}^+}$

- We show that the expressivity can be pushed while preserving tractability
 - Self loops, eg. $\Diamond_L (\Box_H (\exists \text{diagnoses} . \text{Self}) \sqsubseteq \exists \text{hasDiagnostic} . \text{Unsafe})$
 - Role chain axioms, eg. $\Box_H (\text{patientPart} \circ \text{hasPart} \sqsubseteq \text{patientPart})$
 - Boolean combinations of formulas, eg. $\Diamond_H (\text{Tumor}(t) \wedge \text{patientPart}(p, t))$
- We provide a decision calculus for $\mathbb{S}_{\mathcal{EL}^+}$
 - and a prototype implementation based in Datalog

Decision Calculus for $\mathcal{S}_{\mathcal{EL}^+}$

Decision Calculus for $S_{\mathcal{EL}+}$

(1) Normalisation:

- Sharpenings:

$$- \quad s' \preceq s \qquad \qquad s_1 \cap s_2 \preceq s$$

- GCIs:

$$- \quad \Box_s (C \sqsubseteq D) \qquad \qquad \Box_s (C_1 \sqcap C_2 \sqsubseteq D)$$

$$- \quad \Box_s (\exists r. C \sqsubseteq D) \quad \Box_s (C \sqsubseteq \exists r. D)$$

- $\Box_s (C \sqsubseteq \Box_u D)$ $\Box_s (C \sqsubseteq \Diamond_u D)$

- RIAs:

- $\square_s (R' \sqsubseteq R)$ $\square_s (R_1 \circ R_2 \sqsubseteq R)$

- Concept and role assertions:

- $\Box_s C(a)$ $\Box_s r(a, b)$

Decision Calculus for $\mathcal{S}_{\mathcal{EL}^+}$

(1) Normalisation:

- Sharpenings:

- $s' \preceq s$

$$s_1 \cap s_2 \preceq s$$

- GCIs:

- $\Box_s (C \sqsubseteq D)$

$$\Box_s (C_1 \sqcap C_2 \sqsubseteq D)$$

- $\Box_s (\exists r. C \sqsubseteq D)$

$$\Box_s (C \sqsubseteq \exists r. D)$$

- $\Box_s (C \sqsubseteq \Box_u D)$

$$\Box_s (C \sqsubseteq \Diamond_u D)$$

- RIAs:

- $\Box_s (R' \sqsubseteq R)$

$$\Box_s (R_1 \circ R_2 \sqsubseteq R)$$

- Concept and role assertions:

- $\Box_s C(a)$

$$\Box_s r(a, b)$$

(2) Extended modalised GCIs:

$$\Box_t [A \sqsubseteq \Box_s [B \Rightarrow C]]$$

Decision Calculus for $\mathcal{S}_{\mathcal{EL}^+}$

(1) Normalisation:

- Sharpenings:

- $s' \preceq s$

$$s_1 \cap s_2 \preceq s$$

- GCIs:

- $\Box_s (C \sqsubseteq D)$

$$\Box_s (C_1 \sqcap C_2 \sqsubseteq D)$$

- $\Box_s (\exists r. C \sqsubseteq D)$

$$\Box_s (C \sqsubseteq \exists r. D)$$

- $\Box_s (C \sqsubseteq \Box_u D)$

$$\Box_s (C \sqsubseteq \Diamond_u D)$$

- RIAs:

- $\Box_s (R' \sqsubseteq R)$

$$\Box_s (R_1 \circ R_2 \sqsubseteq R)$$

- Concept and role assertions:

- $\Box_s C(a)$

$$\Box_s r(a, b)$$

(2) Extended modalised GCIs:

$$\Box_t [A \sqsubseteq \Box_s [B \Rightarrow C]]$$

* can be rewritten (with a fresh concept D) to

$$\Box_t [A \sqsubseteq \Box_s D] \quad \text{and} \quad \Box_s [D \sqcap B \sqsubseteq C]$$

Decision Calculus for $\mathcal{S}_{\mathcal{EL}^+}$

(1) Normalisation:

- Sharpenings:

- $s' \preceq s$

$$s_1 \cap s_2 \preceq s$$

- GCIs:

- $\square_s(C \sqsubseteq D)$

$$\square_s(C_1 \sqcap C_2 \sqsubseteq D)$$

- $\square_s(\exists r. C \sqsubseteq D)$

$$\square_s(C \sqsubseteq \exists r. D)$$

- $\square_s(C \sqsubseteq \square_u D)$

$$\square_s(C \sqsubseteq \diamond_u D)$$

- RIAs:

- $\square_s(R' \sqsubseteq R)$

$$\square_s(R_1 \circ R_2 \sqsubseteq R)$$

- Concept and role assertions:

- $\square_s C(a)$

$$\square_s r(a, b)$$

(2) Extended modalised GCIs:

$$\square_t [A \sqsubseteq \square_s [B \Rightarrow C]]$$

* can be rewritten (with a fresh concept D) to

$$\square_t [A \sqsubseteq \square_s D] \quad \text{and} \quad \square_s [D \sqcap B \sqsubseteq C]$$

Then replace:

Decision Calculus for $\mathcal{S}_{\mathcal{EL}^+}$

(1) Normalisation:

- Sharpenings:

- $s' \preceq s$

$$s_1 \cap s_2 \preceq s$$

- GCIs:

- $\square_s (C \sqsubseteq D)$

$$\square_s (C_1 \sqcap C_2 \sqsubseteq D)$$

- $\square_s (\exists r. C \sqsubseteq D)$

$$\square_s (C \sqsubseteq \exists r. D)$$

- $\square_s (C \sqsubseteq \square_u D)$

$$\square_s (C \sqsubseteq \diamond_u D)$$

- RIAs:

- $\square_s (R' \sqsubseteq R)$

$$\square_s (R_1 \circ R_2 \sqsubseteq R)$$

- Concept and role assertions:

- $\square_s C(a)$

$$\square_s r(a, b)$$

(2) Extended modalised GCIs:

$$\square_t [A \sqsubseteq \square_s [B \Rightarrow C]]$$

- * can be rewritten (with a fresh concept D) to

$$\square_t [A \sqsubseteq \square_s D] \quad \text{and} \quad \square_s [D \sqcap B \sqsubseteq C]$$

Then replace:

- $\square_s (C \sqsubseteq D)$ by $\square_* [\top \sqsubseteq \square_s [C \Rightarrow D]]$

Decision Calculus for $\mathcal{S}_{\mathcal{EL}^+}$

(1) Normalisation:

- Sharpenings:

- $s' \preceq s$

$$s_1 \cap s_2 \preceq s$$

- GCIs:

- $\square_s (C \sqsubseteq D)$

$$\square_s (C_1 \sqcap C_2 \sqsubseteq D)$$

- $\square_s (\exists r. C \sqsubseteq D)$

$$\square_s (C \sqsubseteq \exists r. D)$$

- $\square_s (C \sqsubseteq \square_u D)$

$$\square_s (C \sqsubseteq \diamond_u D)$$

- RIAs:

- $\square_s (R' \sqsubseteq R)$

$$\square_s (R_1 \circ R_2 \sqsubseteq R)$$

- Concept and role assertions:

- $\square_s C(a)$

$$\square_s r(a, b)$$

(2) Extended modalised GCIs:

$$\square_t [A \sqsubseteq \square_s [B \Rightarrow C]]$$

* can be rewritten (with a fresh concept D) to

$$\square_t [A \sqsubseteq \square_s D] \quad \text{and} \quad \square_s [D \sqcap B \sqsubseteq C]$$

Then replace:

- $\square_s (C \sqsubseteq D)$ by $\square_* [\top \sqsubseteq \square_s [C \Rightarrow D]]$

- $\square_s (C \sqsubseteq \square_u D)$ by $\square_s [C \sqsubseteq \square_u [\top \Rightarrow D]]$

Decision Calculus for $\mathbb{S}_{\mathcal{EL}^+}$

(1) Normalisation:

- Sharpenings:

- $s' \preceq s$

$$s_1 \cap s_2 \preceq s$$

- GCIs:

- $\square_s (C \sqsubseteq D)$

$$\square_s (C_1 \sqcap C_2 \sqsubseteq D)$$

- $\square_s (\exists r. C \sqsubseteq D)$

$$\square_s (C \sqsubseteq \exists r. D)$$

- $\square_s (C \sqsubseteq \square_u D)$

$$\square_s (C \sqsubseteq \diamond_u D)$$

- RIAs:

- $\square_s (R' \sqsubseteq R)$

$$\square_s (R_1 \circ R_2 \sqsubseteq R)$$

- Concept and role assertions:

- $\square_s C(a)$

$$\square_s r(a, b)$$

(2) Extended modalised GCIs:

$$\square_t [A \sqsubseteq \square_s [B \Rightarrow C]]$$

- * can be rewritten (with a fresh concept D) to

$$\square_t [A \sqsubseteq \square_s D] \quad \text{and} \quad \square_s [D \sqcap B \sqsubseteq C]$$

Then replace:

- $\square_s (C \sqsubseteq D)$ **by** $\square_* [\top \sqsubseteq \square_s [C \Rightarrow D]]$
- $\square_s (C \sqsubseteq \square_u D)$ **by** $\square_s [C \sqsubseteq \square_u [\top \Rightarrow D]]$
- $\square_s C(a)$ **by** $\square_s [\{a\} \sqsubseteq \square_s [\top \Rightarrow C]]$

Decision Calculus for $\mathbb{S}_{\mathcal{EL}^+}$

(1) Normalisation:

- Sharpenings:

- $s' \preceq s$

$$s_1 \cap s_2 \preceq s$$

- GCIs:

- $\Box_s (C \sqsubseteq D)$

$$\Box_s (C_1 \sqcap C_2 \sqsubseteq D)$$

- $\Box_s (\exists r. C \sqsubseteq D)$

$$\Box_s (C \sqsubseteq \exists r. D)$$

- $\Box_s (C \sqsubseteq \Box_u D)$

$$\Box_s (C \sqsubseteq \Diamond_u D)$$

- RIAs:

- $\Box_s (R' \sqsubseteq R)$

$$\Box_s (R_1 \circ R_2 \sqsubseteq R)$$

- Concept and role assertions:

- $\Box_s C(a)$

$$\Box_s r(a, b)$$

(2) Extended modalised GCIs:

$$\Box_t [A \sqsubseteq \Box_s [B \Rightarrow C]]$$

- * can be rewritten (with a fresh concept D) to

$$\Box_t [A \sqsubseteq \Box_s D] \quad \text{and} \quad \Box_s [D \sqcap B \sqsubseteq C]$$

Then replace:

- $\Box_s (C \sqsubseteq D)$ **by** $\Box_* [\top \sqsubseteq \Box_s [C \Rightarrow D]]$
- $\Box_s (C \sqsubseteq \Box_u D)$ **by** $\Box_s [C \sqsubseteq \Box_u [\top \Rightarrow D]]$
- $\Box_s C(a)$ **by** $\Box_s [\{a\} \sqsubseteq \Box_s [\top \Rightarrow C]]$

Decision Calculus for $\mathbb{S}_{\mathcal{EL}^+}$

Tautologies

$$(T.1) \frac{}{s \preceq *}$$

$$(T.2) \frac{}{s \preceq s}$$

$$(T.3) \frac{}{\square_*[\top \sqsubseteq \square_*[C \Rightarrow C]]}$$

$$(T.4) \frac{}{\square_*[\top \sqsubseteq \square_*[C \Rightarrow \top]]}$$

$$(T.5) \frac{}{\square_*[R \sqsubseteq R]}$$

Standpoint hierarchy rules (for all $s \in N_S$, ξ being any extended GCI, RIA, or role assertion)

$$(S.1) \frac{s \preceq s' \quad s' \preceq s''}{s \preceq s''}$$

$$(S.2) \frac{s \preceq s_1 \quad s \preceq s_2 \quad s_1 \cap s_2 \preceq s'}{s \preceq s'}$$

$$(S.3) \frac{\square_{s'}\xi \quad s \preceq s'}{\square_s\xi}$$

$$(S.4) \frac{\square_t[C \sqsubseteq \square_{s'}[D \Rightarrow E]] \quad s \preceq s'}{\square_t[C \sqsubseteq \square_s[D \Rightarrow E]]}$$

Internal inferences for extended GCIs

$$(I.1) \frac{\square_s[C \sqsubseteq \square_s[\top \Rightarrow D]]}{\square_*[\top \sqsubseteq \square_s[C \Rightarrow D]]}$$

$$(I.2) \frac{\square_u[\top \sqsubseteq \square_s[C \Rightarrow D]]}{\square_*[\top \sqsubseteq \square_s[C \Rightarrow D]]}$$

Role subsumptions

$$(R.1) \frac{\square_s[R \sqsubseteq R''] \quad \square_s[R'' \sqsubseteq R']}{\square_s[R \sqsubseteq R']}$$

Forward chaining

$$(C.1) \frac{\square_t[B \sqsubseteq \square_s[C \Rightarrow D]] \quad \square_t[B \sqsubseteq \square_s[D \Rightarrow E]]}{\square_t[B \sqsubseteq \square_s[C \Rightarrow E]]}$$

$$(C.2) \frac{\square_u[\top \sqsubseteq \square_t[B \Rightarrow C]] \quad \square_t[C \sqsubseteq \square_s[D \Rightarrow E]]}{\square_t[B \sqsubseteq \square_s[D \Rightarrow E]]}$$

$$(C.3) \frac{\square_u[\top \sqsubseteq \square_t[C \Rightarrow D]] \quad \square_t[D \sqsubseteq \diamond_s E]}{\square_t[C \sqsubseteq \diamond_s E]}$$

$$(C.4) \frac{\square_t[C \sqsubseteq \diamond_s D] \quad \square_t[C \sqsubseteq \square_s[D \Rightarrow E]]}{\square_t[C \sqsubseteq \diamond_s E]}$$

... (26 more rules)

Decision Calculus for $\mathcal{S}_{\mathcal{EL}^+}$

Tautologies

$$(T.1) \frac{}{s \preceq *}$$

$$(T.2) \frac{}{s \preceq s}$$

$$(T.3) \frac{}{\square_*[\top \sqsubseteq \square_*[C \Rightarrow C]]}$$

$$(T.4) \frac{}{\square_*[\top \sqsubseteq \square_*[C \Rightarrow \top]]}$$

$$(T.5) \frac{}{\square_*[R \sqsubseteq R]}$$

Standpoint hierarchy rules (for all $s \in N_S$, ξ being any extended GCI, RIA, or role assertion)

$$(S.1) \frac{s \preceq s' \quad s' \preceq s''}{s \preceq s''}$$

$$(S.2) \frac{s \preceq s_1 \quad s \preceq s_2 \quad s_1 \cap s_2 \preceq s'}{s \preceq s'}$$

$$(S.3) \frac{\square_{s'}\xi \quad s \preceq s'}{\square_s\xi}$$

$$(S.4) \frac{\square_t[C \sqsubseteq \square_{s'}[D \Rightarrow E]] \quad s \preceq s'}{\square_t[C \sqsubseteq \square_s[D \Rightarrow E]]}$$

Internal inferences for extended GCIs

$$(I.1) \frac{\square_s[C \sqsubseteq \square_s[\top \Rightarrow D]]}{\square_*[\top \sqsubseteq \square_s[C \Rightarrow D]]}$$

$$(I.2) \frac{\square_u[\top \sqsubseteq \square_s[C \Rightarrow D]]}{\square_*[\top \sqsubseteq \square_s[C \Rightarrow D]]}$$

Role subsumptions

$$(R.1) \frac{\square_s[R \sqsubseteq R''] \quad \square_s[R'' \sqsubseteq R']}{\square_s[R \sqsubseteq R']}$$

Forward chaining

$$\square [R \sqsubseteq \square [C \Rightarrow D]] \quad \square [R \sqsubseteq \square [D \Rightarrow E]]$$

$$\square [\top \sqsubseteq \square [R \Rightarrow C]] \quad \square [C \sqsubseteq \square [D \Rightarrow E]]$$

If $\square_*[\top \sqsubseteq \square_*[\top \Rightarrow \perp]] \notin \mathcal{K}^\perp$, then \mathcal{K} is satisfiable

Decision Calculus for $\mathbb{S}_{\mathcal{EL}^+}$ (Proofs)

Decision Calculus for $\mathbb{S}_{\mathcal{EL}^+}$ (Proofs)

Theorem 4 (Termination). *The closure of $\mathbb{S}_{\mathcal{EL}^+}$ knowledge bases under the deduction calculus can be computed in PTIME.*

Decision Calculus for $\mathbb{S}_{\mathcal{EL}^+}$ (Proofs)

Theorem 4 (Termination). *The closure of $\mathbb{S}_{\mathcal{EL}^+}$ knowledge bases under the deduction calculus can be computed in PTIME.*

- Polynomial normalisation & worst-case optimal Datalog encoding of the saturation procedure.

Decision Calculus for $\mathbb{S}_{\mathcal{EL}^+}$ (Proofs)

Theorem 4 (Termination). *The closure of $\mathbb{S}_{\mathcal{EL}^+}$ knowledge bases under the deduction calculus can be computed in PTIME.*

- Polynomial normalisation & worst-case optimal Datalog encoding of the saturation procedure.

Theorem 5 (Soundness). *The deduction calculus is sound for $\mathbb{S}_{\mathcal{EL}^+}$ knowledge bases.*

Decision Calculus for $\mathbb{S}_{\mathcal{EL}^+}$ (Proofs)

Theorem 4 (Termination). *The closure of $\mathbb{S}_{\mathcal{EL}^+}$ knowledge bases under the deduction calculus can be computed in PTIME.*

- Polynomial normalisation & worst-case optimal Datalog encoding of the saturation procedure.

Theorem 5 (Soundness). *The deduction calculus is sound for $\mathbb{S}_{\mathcal{EL}^+}$ knowledge bases.*

Theorem 6 (Completeness). *The deduction calculus is refutation-complete for $\mathbb{S}_{\mathcal{EL}^+}$ knowledge bases.*

Decision Calculus for $\mathbb{S}_{\mathcal{EL}^+}$ (Proofs)

Theorem 4 (Termination). *The closure of $\mathbb{S}_{\mathcal{EL}^+}$ knowledge bases under the deduction calculus can be computed in PTIME.*

- Polynomial normalisation & worst-case optimal Datalog encoding of the saturation procedure.

Theorem 5 (Soundness). *The deduction calculus is sound for $\mathbb{S}_{\mathcal{EL}^+}$ knowledge bases.*

Theorem 6 (Completeness). *The deduction calculus is refutation-complete for $\mathbb{S}_{\mathcal{EL}^+}$ knowledge bases.*

- We prove the existence of a model whenever $\Box_*[\top \sqsubseteq \Box_*[\top \Rightarrow \perp]] \notin \mathcal{K}^\vdash$.

Decision Calculus for $\mathbb{S}_{\mathcal{EL}^+}$ (Proofs)

Theorem 4 (Termination). *The closure of $\mathbb{S}_{\mathcal{EL}^+}$ knowledge bases under the deduction calculus can be computed in PTIME.*

- Polynomial normalisation & worst-case optimal Datalog encoding of the saturation procedure.

Theorem 5 (Soundness). *The deduction calculus is sound for $\mathbb{S}_{\mathcal{EL}^+}$ knowledge bases.*

Theorem 6 (Completeness). *The deduction calculus is refutation-complete for $\mathbb{S}_{\mathcal{EL}^+}$ knowledge bases.*

- We prove the existence of a model whenever $\square_*[T \sqsubseteq \square_*[T \Rightarrow \perp]] \notin \mathcal{K}^\perp$.
- This model is canonical in a sense but it will typically be infinite.

Conclusions and Future Work

Conclusions and Future Work

Conclusions:

Conclusions and Future Work

Conclusions:

- Managing perspectives is interesting in knowledge integration scenarios

Conclusions and Future Work

Conclusions:

- Managing perspectives is interesting in knowledge integration scenarios
- Standpoint \mathcal{EL}^+ is tractable

Conclusions and Future Work

Conclusions:

- Managing perspectives is interesting in knowledge integration scenarios
- Standpoint \mathcal{EL}^+ is tractable
- Decision calculus and datalog-based prototypical implementation

Conclusions and Future Work

Conclusions:

- Managing perspectives is interesting in knowledge integration scenarios
- Standpoint \mathcal{EL}^+ is tractable
- Decision calculus and datalog-based prototypical implementation

Conclusions and Future Work

Conclusions:

- Managing perspectives is interesting in knowledge integration scenarios
- Standpoint \mathcal{EL}^+ is tractable
- Decision calculus and datalog-based prototypical implementation

Future Work:

- Calculus optimisation and efficient implementations
- Reasoning with more expressive languages (eg. \mathcal{SHIQ})
- Towards conceptual modelling with standpoints for knowledge integration challenges

The end.

Labels example

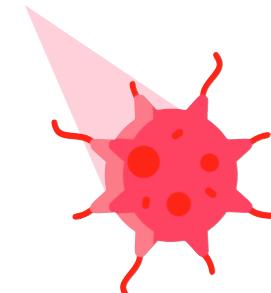
Labels example

$$\Box_S [\text{Process} \sqcap \text{Tissue} \sqsubseteq \perp]$$
$$\Diamond_L [\text{Tumor}] \sqsubseteq \Box_L [\text{Tissue}]$$
$$\Diamond_H [\text{Tumor}] \sqsubseteq \Box_H [\text{Process}]$$
$$\Diamond_S \neg \text{Tumor}(a)$$
$$(L \cup H) \leq S$$

(It could be a Tumor according to someone else)

$$\Box_L \text{Tumor}(a)$$

Labels example


$\Box_S [Process \sqcap Tissue \sqsubseteq \perp]$

$\Diamond_L [Tumor] \sqsubseteq \Box_L [Tissue]$

$\Diamond_H [Tumor] \sqsubseteq \Box_H [Process]$

$\Diamond_S \neg Tumor(a)$

$(L \cup H) \leq S$

(It could be a Tumor according to someone else)

$\Box_L Tumor(a)$

$[Process \sqcap Tissue \sqsubseteq \perp]$

$Tumor_L \sqsubseteq Tissue, Tumor_L \sqsubseteq Tumor$

$Tumor_H \sqsubseteq Process, Tumor_H \sqsubseteq Tumor$

$\neg Tumor(a)$

Infer: (It cannot be a Tumor according to anyone)

$\neg Tumor_L(a)$

$\neg Tumor_H(a)$