Nemo: Your Friendly and Versatile Rule Reasoning Toolkit

Alex Ivliev, Lukas Gerlach, Simon Meusel, Jakob Steinberg, Markus Krotzsch
Knowledge-Based Systems Group, TU Dresden, Dresden, Germany

{alex.ivliev, lukas.gerlach, markus.kroetzsch } @tu-dresden.de,
{simon.meusel, jakob_maximilian.steinberg } @mailbox.tu-dresden.de

Abstract

We present Nemo, a toolkit for rule-based reasoning and
data processing that emphasises robustness and ease of use.
Nemo’s core is a scalable and efficient main-memory reasoner
that supports an expressive extension of Datalog with sup-
port for datatypes, existential rules, aggregates, and (stratified)
negation. Built around this core is a versatile system of librar-
ies and applications for interfacing with several data formats
and programming languages, use as a web application, and
IDE integration. In this system description, we present this
toolkit and discuss relevant application areas in rule-based
knowledge representation, knowledge graph processing, and
reasoner prototyping. Our evaluation on a range of tasks from
these areas demonstrates Nemo’s robust performance in com-
parison to state-of-the-art rule engines.

1 Introduction

Declarative rule languages are central to knowledge repres-
entation and reasoning (KRR), be it as the foundation of logic
programming (Korner et al. 2022; Calimeri et al. 2020), as
a design principle for ontology languages (ter Horst 2005;
Motik et al. 2009; Krotzsch, Rudolph, and Hitzler 2013),
or merely as a computational framework for reasoning
(Gomez Alvarez, Rudolph, and Strass 2023; Simancik, Kaza-
kov, and Horrocks 2011; Krotzsch 2011). Indeed, few lo-
gical paradigms embody such harmony of intuitive meaning,
formal semantics, and practical execution. In recent years,
rules have therefore become an important approach to de-
clarative computation, not only in KRR but also in many
fields concerned with the management, integration, and ana-
lysis of data (Aberger et al. 2016; Seo, Guo, and Lam 2015;
Aref et al. 2015).

One of the most basic rule languages is Datalog (Abite-
boul, Hull, and Vianu 1994), which is also the core of many
more complex formalisms. Recent years saw much increased
interest in Datalog (Alviano and Pieris 2024) and closely re-
lated languages such as existential rules (Benedikt et al. 2017,
Mugnier and Thomazo 2014). Accordingly, many rule reas-
oning systems have been presented, which we can roughly
classify in the following types (Ivliev et al. 2023):

1. Answer set programming solvers (Gebser, Kaufmann, and
Schaub 2012; Alviano et al. 2017) and logic programming
systems such as Prolog (Korner et al. 2022)

2. Knowledge graph and deductive database engines such
as RDFox (Nenov et al. 2015), VLog (Urbani, Jacobs,
and Krotzsch 2016), Vadalog (Bellomarini, Sallinger, and
Gottlob 2018), and Graal (Baget et al. 2015)

3. Specialised data-analytics systems such as Soufllé (Jordan,
Scholz, and Subotic 2016), LogicBlox (Aref et al. 2015),
SocialLite (Seo, Guo, and Lam 2015), or EmptyHeaded
(Aberger et al. 2016)

4. Data management frameworks such as Datomic, Google
Logica, and CozoDB

In spite of this apparent abundance, researchers and prac-
titioners may struggle to find a rule engine that suits their
needs. First of all, the design space for such systems is very
large, and the breadth of applications depends on a wide
range of relevant features. For example, tools of type (4) are
more similar to rule-based database APIs than to reason-
ers for knowledge representation. Moreover, many systems
described in the literature may not be a viable choice in prac-
tice, due to discontinuation of the project, or due to cost and
access restrictions of closed-source commercial systems. In
the field of logic programming, these problems have been
overcome and advanced open-source systems such as Clingo
(Gebser et al. 2019) are available to researchers, whereas the
situation in other rule system categories is more precarious.!
We therefore present Nemo, a new rule reasoning toolkit
for applications of type (2) and (3), where the computation of
logical entailments (or query results) from a variety of inputs
is the main reasoning task. Nemo’s rule language is an exten-
sion of Datalog with various datatypes, negation, aggregates
(both stratified), and many datatype-specific functions and
operators known from query languages like SPARQL. At the
same time, Nemo is an existential rule reasoner with a fast im-
plementation of the restricted (or standard) chase algorithm.
Supported formats and types for data values conform to the
RDF standard (Cyganiak, Wood, and Lanthaler 2014).
Nemo aims to combine robust performance with flexible
and convenient use. Thanks to its modular architecture, we
can provide command-line clients for all major platforms,
a public Web application with built-in rule editor, an IDE
plugin for rule editing in VSCode, and APIs for integration

Among the mentioned systems of types (2) and (3), the only
open-source tool with a release in the past twelve months is Souffié.

Nemo Rule Engine v0.5.1-dev Nemo on Github Web Interface on Github Docs [CIEELCR) b
Code editor B Open file

1 parents(alice,carla,bob) . - S
2 parents(daphne, carla,bob) . Add local file as input
3 name(alice, "Alice Miller", 2003 .

Results:

Program execution (2]

® 11011 problem Lrx

Derived 6 facts in 0.1 seconds (5+1+3 ms)
expected closing parenthesis

child(4) sibling (2)
4 % Two simple rules:
5 child(?C,?M), child(?C,?F) :-

6 parente(2C.7M, 7F) . hild (4 rows) @ Download all rows as CSV

8 sibling(?C,7D) :- 1 alice carla

child(?C,7P),)
10 child(?D,?P), 2CI=7D . 2 alice bob

3 daphne carla

4 daphne bob

Figure 1: Rule reasoning in the browser with Nemo Web

in several programming languages. Nemo’s optimised main-
memory data storage can handle hundreds of millions of facts
on modern laptops, and several billions on mid-range servers.
All components of Nemo are free and open source, and their
development repositories public. Most of Nemo is written in
Rust, a language that emphasizes type and memory safety,
and code quality is an explicit concern.

In this system description, we present Nemo’s overall ar-
chitecture (Section 2) and rule language (Section 3). We then
highlight three important application areas in KRR, and show
how Nemo can be used in each of them (Section 4). Our per-
formance evaluation and feature analyses position Nemo in
the wider space of modern rule engines (Section 5). We close
with an outlook on Nemo’s next steps.

2 System Overview

Nemo comprises several applications and programming lib-
raries. This section gives an overview of the main compon-
ents, related functionality, and implementation aspects.?

Nemo’s main functionality is the materialisation of lo-
gical consequences from input data using a given set of
rules, called program in this context. Data in Nemo is re-
lational, based on predicate names of fixed arities, over a
domain that includes both abstract identifiers (“logical con-
stants”, named nulls) and concrete data values (numbers,
strings, dates, etc.). Graph data, e.g., in RDF format (Cy-
ganiak, Wood, and Lanthaler 2014), is an important special
case. As its rule language, Nemo supports an extension of
Datalog with many features, discussed in detail in Section 3.
In the simplest case, the program can be a set of Datalog rules,
with the data given as logic facts directly within the program.
Elaborate cases may realise complex data transformations or
reasoning tasks, as shown in Section 4.

Nemo also supports fracing, i.e., it can provide a justific-
ation for its inferences by producing a proof tree that shows
the concrete rule applications and input facts used to obtain
a conclusion. In contrast to exhaustive provenance computa-
tion (Elhalawati, Krétzsch, and Mennicke 2022), tracing is
very efficient and adds no cost to reasoning.

Two distinct applications support the evaluation of pro-

2A detailed documentation is available online: https://knowsys.
github.io/nemo-doc

Nemo apps Nemo APIs

Nemo common Program parser Data import Data export Rust API
Logical model Data model Nemo store
Tracing engine Execution engine Query engine I y store y

Figure 2: Main components of Nemo

grams: the Nemo command-line client nmo3 and a browser-
based application Nemo Web.# Both applications are run
entirely on the user’s computer: the command-line client as a
native binary, and Nemo Web as a WebAssembly executable
that runs in browsers without prior installation.

Ease of use is a major design goal for Nemo, setting it apart
from typical research prototypes. A key concern is to sup-
port programmers in using our custom Datalog syntax and in
modelling computation with logical rules. Nemo Web there-
fore includes a powerful rule editor component with syntax
highlighting and auto-completion (see Figure 1). Advanced
editing support is provided by the Nemo VSCode extension,>
which augments VSCode (and compatible IDEs) with ad-
vanced features for rule development, such as highlighting,
completion, error reporting, syntax-aware searching and re-
naming, and refactoring. All Nemo applications provide con-
venient parameters and meaningful error messages.

Architecture The main components of Nemo are illus-
trated in Figure 2. Most parts are written in Rust, with
the exception of Nemo Web, the VSCode extension (both
TypeScript), and the JavaScript and Python APIs. Nemo
consists of several libraries (Rust crafes), most important
of which is Nemo common which bundles all major func-
tions, and Nemo store, the main memory storage engine. For
the Web application and JavaScript API, Rust is compiled
into system-independent WebAssembly, which can be run
in any modern browser. The VSCode extension builds on an
API that uses the open language server protocol (LSP 2024),
which is also a basis for extensions in many other IDEs.

Rule Parsing and Representation Nemo’s program
parser creates an abstract syntax tree (AST), which is the
core of Nemo’s advanced rule language support. We use
Parser Expression Grammars and follow Medeiros and Mas-
carenhas (2018) for syntax error recovery. In a second step,
the AST is converted into a logical model, which is a more
traditional structural model that abstracts from most syn-
tactic details. The logical reasoning community has often
neglected the first stage, and established tools such as the
OWL API (Horridge, Bechhofer, and Noppens 2007) only
offer a structural view that is not usable for advanced editing
features. Nemo’s logical model is closely connected to the
data model in Nemo store, which defines the structure and
supported datatypes of domain elements.

3We avoid a naming conflict with the Linux file manager nemo.
Installation instructions and pre-compiled binaries are in our main
repository https://github.com/knowsys/nemo.

4Accessible at https://tools.iccl.inf.tu-dresden.de/nemo/.

5See https://github.com/knowsys/nemo-vscode-extension

https://knowsys.github.io/nemo-doc
https://knowsys.github.io/nemo-doc
https://github.com/knowsys/nemo
https://tools.iccl.inf.tu-dresden.de/nemo/
https://github.com/knowsys/nemo-vscode-extension

Data Import and Export In addition to logical facts given
in rules files, Nemo can also import (possibly large) data-
sets that are encoded in CSV (and other forms of delimiter-
separated values) or RDF. For RDF, triples (NTriples, Turtle,
RDF/XML) and quads (TRiG, NQuads) are supported. Data
can be loaded from local files or online URLs. All formats are
also available for export, and (on the command line) results
can also be printed to the console. Import and export can be
controlled by various parameters, and support optional GZip
(de)compression.

Main-memory Data Store Data in Nemo store is organ-
ised in tables, using data structures that are designed to be
both fast and compact. Inspired by VLog, we use hierarch-
ically sorted, column-based tables and compress columns
using run-length encoding with increments (Urbani, Jacobs,
and Krotzsch 2016). Unlike VLog, however, our columns
contain domain elements of several types: fixed-size val-
ues (e.g., 32bit floats or 64bit signed ints) are stored dir-
ectly, while variable-sized data (e.g., strings and IRIs) is first
mapped to integer ids through a dictionary. Columns are first
sorted by type (e.g., all integers before all floats), so that ac-
cess operations can process values of the same type in fast
loops without checking the type of each value.

Nemo store does not support rule reasoning, but can be
used to achieve the effect of a single rule application by ma-
terialising the results of a query through its query engine. For
this task, we mostly access tables as trie structures (Fredkin
1960), and we evaluate conjunctions using leapfrog trie-join,
a popular worst-case optimal multiway join algorithm with
asymptotic advantages over binary join plans (Veldhuizen
2014). Operations like union or difference use analogous
trie-based algorithms. For operations like projection and re-
ordering, which cannot be implemented efficiently with trie
iterators, Nemo uses row-based temporary tables.

Program Execution The execution engine materialises in-
ferences by semi-naive bottom-up evaluation (Abiteboul,
Hull, and Vianu 1994), where existential quantifiers in con-
clusions are handled with a 1-parallel restricted chase al-
gorithm (Benedikt et al. 2017). Like VLog, we avoid costly
table updates by storing the fresh results of each rule applic-
ation in separate delta tables (Urbani, Jacobs, and Krotzsch
2016). This is useful for semi-naive evaluation and helps the
tracing engine to re-construct traces. The cost of combining
many delta tables is mitigated by caching such unions.

Rule dependencies are analysed by overestimating data-
flow during materialisation (Gonzdlez et al. 2022), and this
information is used to stratify non-monotonic features (neg-
ation, aggregates), and to heuristically select rule application
orders with fewer rule applications overall.

The execution engine also prepares query plans for Nemo
store to execute. In our setting with its streaming multi-way
operations, the order of variables (columns) largely determ-
ines the query plan. We heuristically aim for variable orders
which avoid inefficiencies (such as cross products) and re-
orderings (e.g., for aggregation operations), and which pro-
duce results in an order that is useful for subsequent rule
applications.

P I e Y O N

3 Language Features

Nemo builds upon the declarative rule language Datalog
(Abiteboul, Hull, and Vianu 1994), and extends it with many
features of modern query and rule languages. This section
gives an overview of the most important such extensions:
datatypes and related functions, existential rules, negation,
and aggregation.

A Datalog rule is a logical formula of the form H « B,
where the head H and body B are conjunctions of first-order
atoms, and all variables are implicitly universally quanti-
fied. Nemo combines traditional logic programming syntax
with notation from the query language SPARQL (Harris and
Seaborne 21 March 2013), which encodes identifiers in more
robust ways (supporting special characters and data types),
as illustrated next:

parents(alice,carla,bob) .
parents(<https://example.org/daphne>,carla,bob) .
nameAndYearOfBirth(alice,"Alice Miller",2003) .
% Two simple rules:
child(?C,?M), child(?C,?F) :- parents(?C,?M,?F) .
sibling(?C,?D) :- child(?C,?P),

child(?D,?P), ?C != 7D .

Lines 1-3 provide three facts, illustrating some basic syntax
for various kinds of data. In general, all syntactic forms avail-
able in RDF and SPARQL can be used, e.g., "s#IE%¥"@ja and
"3.1"r<http://www.w3.0rg/2001/XMLSchema#float>. To
load larger datasets from files, one may use statements such as
@import parents :- csv{resource = "my-data.csv"} .
Lines 5-7 show two simple rules, where ? marks variables
(as in SPARQL) and != encodes inequality. Nemo supports
non-monotonic negation using the following syntax:
onlyChild(?C) :- child(?C,_), ~sibling(?C,_) .
Asusual in logic programming, _ denotes body variables that
occur only once, i.e., both _ in Line 8 denote distinct vari-
ables. Moreover, Nemo considers variables that occur only in
negated body atoms to be existentially quantified beneath the
negation. Hence, ~sibling(?C,_) requires that all sibling
facts do not match this pattern, whereas child(?C,_) re-
quires some matching fact. A similar convention is used in the
answer set programming, €.g., in current versions of Clingo
(Gebser, Kaufmann, and Schaub 2012).

Aggregate functions, which compute results from sets or
multi-sets of tuples, have a long history in logic programming
(Ross and Sagiv 1997; Alviano et al. 2011; Zaniolo et al.
2017). Nemo supports common aggregates such as #count,
#sum, or #max, as shown next:

childCount (?P,#count(?C)) :- child(?C,?P) .

Rule 9 counts, for each value of 7P, the number of distinct
values of 7C that satisfy the rule body. In general, we distin-
guish three kinds of variables: aggregate variables occur in
aggregate functions (in the head), group-by variables are the
head variables that are not aggregate variables; and body-
only variables that do not appear in the head. Aggregation in
steps: (1) find all rule matches, (2) project away bindings of

body-only variables and remove duplicates that agree on all
remaining variables, (3) group the set of projected matches
by distinct values of group-by variables, and (4) apply the
aggregation function on each group. Duplicate elimination in
(2) means that we always aggregate over sets, corresponding
to the keyword DISTINCT in many query languages. Users
control the semantics through the use of variables in the head:

suml(?A,?B,#sum(?N)) :- p(?A,?B,?N) .
sum2 (?A,#sum(?N,?B)) :- p(?A,?B,?N) .
sum3(?A, #sum(?N)) :- p(?A,7B,?N) .

Rule 10 sums up the numbers N for each pair of As and Bs;
rule 11 sums up the Ns from all pairs of Ns and Bs for each A
(where some pairs may have the same N value); and rule 12
sums up the distinct Ns for each A.

Nemo supports existential rules, which allow existentially
quantified variables in rule heads. We discuss this feature in
more detail in Section 4.1. Syntactically, existentially quan-
tified variables are denoted by !:

child(?C,!P), child(!P,?G) :- grandchild(?C,?G) .
For each match of the body of rule 13, Nemo creates a fresh
value for !P, provided that the head is not satisfied for any
existing value yet (restricted chase). Fresh values are repres-
ented in Nemo by named nulls, which we treat as a separate
type of domain element distinct from other elements. Named
nulls are identified with RDF blank nodes in data import and
export, and denoted accordingly (using notation like _:42).

Finally, Nemo also supports many different datatypes —
including integer, string, language-tagged string, single and
double precision float, and boolean — and related functions.
The latter include many functions known from SPARQL
FILTER expressions, such as SQRT (square root of a number)
or STRLEN (length of a string), as well as standard arithmetic
operators. Functions can be nested arbitrarily and may occur
anywhere in a rule. Moreover, comparison operators like < or
I=, can be used as atoms (see line 7), provided that variable
bindings are sufficiently determined by other parts of the
body (in particular, one cannot define body matches based
on systems of inequalities).

Nemo is dynamically typed and allows any type of data
to occur in any position, without requiring a fixed schema.®
Functions such as STRLEN are not defined for all types of
inputs, and rules carry the implicit condition that they only
apply to variable bindings for which all functions are defined.

The semantics of Nemo follows from the declarative condi-
tions that define how single rules are applied. Doing so until a
(possibly infinite) least fixed-point is reached defines an (op-
erational) semantics. For many fragments of our language,
this semantics agrees with a well-understood model theory:
least Herbrand models for Datalog, perfect models for Data-
log with stratified negation, universal models for existential
rules. However, existential rules are not always compatible
with other Datalog extensions: even stratified negation can
lead to situations where entailments depend on seemingly

¢This is the standard choice in knowledge representation, also
seen in OWL, RDF, SPARQL, Prolog, and ASP.

arbitrary choices of the order of rule applications (Krotz-
sch 2020). Only few cases have yet been found that to pre-
vent such problems (Ellmauthaler, Krétzsch, and Mennicke
2022), so Nemo does not restrict to these limited cases, and
rather warns users about the subtleties of existential rules in
the documentation.

4 Application Areas

With its many language features, Nemo can support use cases
in various areas of knowledge representation and reasoning.
In this section, we highlight existential rule reasoning, pro-
cessing of (large) knowledge graphs, and the use of rules
for implementing prototype reasoners for other logics. Our
discussion also illustrates how various features of Nemo are
relevant in these cases.

4.1 Existential Rule Reasoning

As introduced in Section 3, Nemo can represent and reason
with rules that feature existential variables.

p(?Y,!1Z), p(1Z,?Y) :- p(?X,?Y) .

Running the restricted (a.k.a. standard) chase on such ex-
istential rules (a.k.a. tuple-generating dependencies (tdgs)),
yields a universal model that allows for conjunctive query
answering (Deutsch, Nash, and Remmel 2008). Reasoners
like Nemo typically implement the chase, but reasoning over
(fragments of) existential rules can also be achieved by query
rewriting and combined methods, as supported in Vadalog
(Bellomarini, Sallinger, and Gottlob 2018) and Graal (Baget
et al. 2015).

In general, query answering over existential rules is un-
decidable (Beeri and Vardi 1981), so no approach covers
all cases. For the chase, undecidability is tied to the prob-
lem of non-termination, which may occur due to the cre-
ation of new values. Detecting this situation is also unde-
cidable (Gogacz and Marcinkowski 2014; Grahne and Onet
2018), and much research has focused on identifying lan-
guage fragments and methods to decide (non)termination
(Gogacz, Marcinkowski, and Pieris 2020; Fagin et al. 2005;
Cuenca Grau et al. 2012; Carral, Dragoste, and Krotzsch
2017; Gerlach and Carral 2023b; Gerlach and Carral 2023a;
Hanisch and Krétzsch 2024). Nemo does not currently im-
plement any such check, and relies on users for ensuring ter-
mination. New, generalised criteria would be necessary to do
s0, since Nemo has further ways of creating new values using
datatype functions. Even without such functions, recent res-
ults showed that the fragment of existential rules for which
the restricted chase terminates is not even semi-decidable,
but is powerful enough to express all homomorphism-closed
decidable queries (Bourgaux et al. 2021). These results apply
to Nemo as well.

Different variants of the chase algorithm terminate on dif-
ferent rule sets. The skolem chase, for example, terminates
on strictly less rule sets compared to the restricted chase. In
rule reasoners that do not allow for existential variables, but
function symbols, such as Soufflé (Jordan, Scholz, and Su-
botic 2016) or Gringo (Gebser et al. 2019), one can replace
existential variables by skolemisation, effectively executing

a skolem chase. For example, rule 14 can be skolemised as
follows.

p(?Y,£(?Y)), p(£(?Y),?Y) :- p(?X,?Y).

However, the skolem chase does not always terminate
on rule 14. Consider for example the fact p(a,b). The
skolem chase introduces infinitely many facts p(b,£(b)),
p(£(b),b), p(£(b), £(£(0))), p(E(£(D)),£(b)), For
the restricted chase, this is impossible as the facts
p(a,b), p(b,n), p(n,b) already satisfy rule 14 (where n
is a fresh null). Therefore, Nemo has a termination advant-
age over reasoners that only allow running (or simulating) the
skolem chase. This is not exclusive for Nemo though as other
reasoners, e.g., VLog (Carral et al. 2019a), also implement
the restricted chase.

While the chase is conceptually simple, large datasets de-
mand efficient and sophisticated implementations. Practic-
ally motivated research in this direction optimises, e.g., rule
application orders or join algorithms (Gonzdlez et al. 2022;
Veldhuizen 2014). For empirical evaluation, there exists a set
of common benchmarks (Benedikt et al. 2017)7. As Nemo
natively supports existential rules, it is easy to implement the
respective programs and compare to existing reasoners. We
give a detailed evaluation in Section 5 together with more
details on existing reasoning systems.

4.2 Knowledge Graph Processing

Reasoning with (large) knowledge graphs is an important
task in KRR, semantic web, and data management, which
also drives development of rule reasoning systems (Nenov et
al. 2015; Aberger et al. 2017; Seo, Guo, and Lam 2015). Rel-
evant use cases include free and open knowledge graphs such
as Wikidata (Vrandeci¢ and Krotzsch 2014), DBpedia (Bizer
et al. 2009), YAGO (Suchanek et al. 2024), or DBLP,® but
also graphs-based data management and integration projects
in companies. Main challenges for reasoners are full support
for data exchange standards such as RDF (Cyganiak, Wood,
and Lanthaler 2014), and handling very large amounts of
data, e.g., billions of facts in the case of Wikidata.

Since RDF entities are first-class citizens in Nemo, it is
well-suited to interact with modern knowledge graphs, for
which RDF is the most common exchange format today.
Thanks to the efficient underlying implementations, Nemo
canindeed handle knowledge bases with hundreds of millions
or billions of facts, provided that sufficient main memory is
available (see Section 5).

As a concrete illustration of a practically relevant pro-
cessing task on knowledge graphs, we consider the creation
process of the recent YAGO 4.5 knowledge base (Suchanek
et al. 2024). YAGO is constructed as a curated subset of
Wikidata with improved ontological models and additional
links to external ontological vocabularies. The ontology
modelling follows several design principles, including that
of avoiding redundancy in data. A particular case are inverse
properties, which may store the same information in two

"https://github.com/knowsys/nemo-examples/tree/main/
chasebench
8https://dblp.org/rdf/

6
7
18
9
20
21
2
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
4

42
43
44
45
46
47
48
49
50
5

facts. For example, persons may have a nationality whereas
countries may have citizens. To select which of two inverse
properties to keep, YAGO proposes to prefer the property
that, on average, has fewer values (in our example, nation-
ality rather than citizen). While YAGO 4.5 was created by
performing this analysis in ad hoc scripts, it is also an ex-
cellent use case for aggregates and numeric data in Nemo,
as shown in the following set of rules, where predToKeep
denotes preferred properties.

@prefix wikibase:
<http://wikiba.se/ontology#>.

@prefix wdt:
<http://www.wikidata.org/prop/direct/>.

@import wikidata :- {resource="wikidata.nt.gz"}.

inversePropEntities(?s,?0) :-
wikidata(?s,wdt:P1696,70),
COMPARE (STR(?s),STR(?0)) = -1.

inverse(?pl,?p2) :-
inversePropEntities(?el,?e2),
wikidata(?el,wikibase:directClaim, ?p1),
wikidata(?e2,wikibase:directClaim, ?p2).

pred(?s) :- inverse(?s,_).

pred(?0) :- inverse(_,?0).

objCountPerPredAndSource(?p, ?s,#count(?0)) :-
pred(?p), wikidata(?s,?p,?0).

totalSubjCountPerPred(?p,#count(?s)) :-
objCountPerPredAndSource(?p,?s,_).

avgObjCountPerPredicate(?p,
DOUBLE (#sum(?count,?s)) / ?totalSubj) :-
objCountPerPredAndSource(?p, ?s, ?count),
totalSubjCountPerPred(?p,?totalSubj).

rightSmaller(?right) :-
inverse(?left,?right),
avgObjCountPerPredicate(?left,?countLeft),
avgObjCountPerPredicate(?right, ?countRight),
?countRight < ?countLeft.

predToKeep(?right) :- rightSmaller(?right).
predToKeep(?left) :- inverse(?left,?right),
~rightSmaller(?right).

In line 21, we load all Wikidata triples into the ternary
wikidata predicate. Line 23 extracts property names that
are inverses of each other (encoded in Wikidata through the
property wdt:P1696). Here, we ignore properties that are the
inverses of themselves and we only pick the pairs of proper-
ties where the left hand side is lexicographically smaller to
avoid introducing both directions of symmetries. This, so far,
only marks property entities in Wikidata and not the corres-
ponding RDF properties, which we in turn look up in rule 26.
For a convenient way of accessing all relevant predicates, we
introduce pred in lines 30 and 31. Line 33 counts the num-
ber of objects per subject and relevant predicate to be able to
compute the average number of objects per subject in rule 38.
In line 43, for every pair of inverse properties, we mark those
on the right side of the relation where the average object per

https://github.com/knowsys/nemo-examples/tree/main/chasebench
https://github.com/knowsys/nemo-examples/tree/main/chasebench
https://dblp.org/rdf/

[

3
54
55
56
57
58
59
60
61
62
63
64
65
66
67
63
69
70
71
72
73
74
75
76

subject count is smaller. If this condition is fulfilled, we want
to keep the respective property, which we indicate through
rule 49. Otherwise, we keep the left property using rule 50.
Then, predToKeep contains exactly the properties desired by
the YAGO 4.5 analysis.?

4.3 Reasoner Prototyping

Thanks to the various language features, particularly support
for existentials, in Nemo, we can have (prototypical) imple-
mentations of reasoning algorithms for many KR formalisms,
e.g. for OWL (OWL Working Group 2009) (description lo-
gic) ontologies, DatalogMTL (Brandt et al. 2018), standpoint
logic (G6mez Alvarez, Rudolph, and Strass 2023), Data-
log(S) (Carral et al. 2019b), and stream reasoning (Urbani,
Kroétzsch, and Eiter 2022).

EL-Reasoning E£L (Baader, Brandt, and Lutz 2005) is a
rather simple class of description logic ontologies that allows
for efficient reasoning implementations (Kazakov, Krotzsch,
and Simancik 2013) based on only a few “rules”. To be pre-
cise, we consider rules for L7 . In fact, these rules can be
represented in Datalog. Given an OWL ontology in RDF
(NTriples) format, the necessary preprocessing can also be
done directly within Nemo.!© The preprocessing yields the
following tables: isMainClass, isSubClass, conj, exists,
subClassOf, subPropChain, subProp. We can then exhaust-
ively compute all (implicit) subclass relations within the on-
tology and identify when two main classes are in a subclass
relation by utilising the following Nemo rules.

init(?0)
init(?0)

:- isMainClass(?C) .
:- ex(?E,?R,?0) .

subClass0£(?C,?C) :- init(?C) .
subClassO£f(7C,owl:Thing) :- isMainClass(?C) .
subClassO0£(?C,7?D1), subClassO0f(?C,?D2) :-
subClass0£(?C,?Y), conj(?Y,?D1,7?D2)
subClassO£f(?C,?I) :- subClassOf(?C,7?D1),
subClassO0f(?C,?D2),
conj(?I,?D1,7?D2), isSubClass(?I)

ex(?E,?R,?C) :- subClassOf(?E,?Y),
exists(?Y, 7R, ?0)

subClassOf(?E,?Y) :- ex(?E,?R,?C),
subClass0£(?C,?D), subProp(?R,?S),
exists(?Y, 7S,?7D), isSubClass(?Y) .

ex(?E,?S,?D) :- ex(?E,?R1,7?C), ex(?C,?R2,7D),
subProp(?R1,7S1), subProp(?R2,7S2),
subPropChain(?S1,7S2,7S)

subClassOf(?C,?E) :- subClassOf(?C,?D),
subClassO0£f (7D, ?E)

subClassOf(?E, owl:Nothing) :-
ex(?E,?7R,?C), subClassOf(?C,owl:Nothing)

mainSubClassOf(?A,?B) :- subClassOf(?A,7B),
isMainClass(?A), isMainClass(?B)

9The Wikidata/Yago 4.5 example and the corresponding out-
puts are available at https://github.com/knowsys/nemo-examples/
tree/main/examples/wikidata-yago-like-inverse-property-cleanup

0https://github.com/knowsys/nemo-examples/blob/main/
examples/owl-el/from-owl-rdf/owl-rdf-preprocessing.rls

The intuition of the predicates from the program is
as follows: init(?C) contains all relevant OWL classes
?C; subClassOf(?X,?Y) expresses that ?X is a subclass of
?Y; ex(?X,?R,?Y) expresses that every element of class
?X is connected to an element of ?Y via an ?R property;
and mainSubClassOf(?X,?Y) expresses a subclass relation
between two main classes ?X and ?V.

DatalogMTL DatalogMTL (Brandt et al. 2018) extends
Datalog with metric temporal logic operators that indicate if
a fact holds sometimes/always in the future/past, potentially
restricted to the scope of a given interval. For DatalogMTL
programs with closed intervals, we give a translation into
a Nemo program by explicitely annotating time points at
predicates. We illustrate this idea with an example from the
MeTeoR DatalogMTL-reasoner (Wang et al. 2022).1

Example 1. This example checks if two sensors indicate
high temperatures for a long enough interval or with a high
enough frequency. 12

Overheat(x) « B(o,101HighTemp(x) (D)
Overheat(x) < Bj20] €[0,5.5] HighTemp(x) 2)
Alert «— Overheat(x) A Overheat(y) A NextTo(x,y) (3)

Intuitively, a sensor reports Overheat if it reports HighTemp
constantly for an interval of 10 minutes (B[o,10]) or at least
once every 5.5 minutes (9[0,5.5)) within the last 20 minutes
(B[0,201)- An Alert is raised if two sensors NextTo each other
report Overheat.

The following Nemo program is a rule-by-rule translation.
Note that we split the second rule into two to disentangle the
nested box and diamond operator.

Overheat(?Sensor,?Start + 10.0,?End) :-
HighTemp(?Sensor, ?Start,?End),
?End - ?Start >= 10.0.

HighTempSometimes(?Sensor,?Start,?End + 5.5) :-
HighTemp(?Sensor, ?Start, ?End) .

Overheat(?Sensor,?Start + 20.0,?End) :-
HighTempSometimes(?Sensor,?Start,?End),
?End - ?Start >= 20.0.

Alert(?SensorA,MAX(?sA,?sB) ,MIN(?eA,?eB)),
Alert(?SensorB,MAX(?sA,?sB) ,MIN(?eA,?eB)) :-
Overheat (?SensorA,?sA,?eA),
Overheat (?SensorB, ?sB, 7eB) ,
SameLocation(?sA, ?sB),
?sA <= 7eB, 7sB <= 7eA.

Depending on the input facts, it can be vital to have aux-
iliary rules for merging intervals, e.g.

HighTempSometimes(?Sensor,?sA,?eB) :-
HighTempSometimes(?Sensor,?sA,?eA),
HighTempSometimes(?Sensor, ?sB, 7eB),

?sA <= ?7eB, 7sB <= 7eA,

?sA <= 7sB, 7eA <= 7eB.

https://github.com/wdimmy/MeTeoR
2https://github.com/knowsys/nemo-examples/blob/main/
examples/datalogMtlSensor/datalogMtlSensor.rls

https://github.com/knowsys/nemo-examples/tree/main/examples/wikidata-yago-like-inverse-property-cleanup
https://github.com/knowsys/nemo-examples/tree/main/examples/wikidata-yago-like-inverse-property-cleanup
https://github.com/knowsys/nemo-examples/blob/main/examples/owl-el/from-owl-rdf/owl-rdf-preprocessing.rls
https://github.com/knowsys/nemo-examples/blob/main/examples/owl-el/from-owl-rdf/owl-rdf-preprocessing.rls
https://github.com/wdimmy/MeTeoR
https://github.com/knowsys/nemo-examples/blob/main/examples/datalogMtlSensor/datalogMtlSensor.rls
https://github.com/knowsys/nemo-examples/blob/main/examples/datalogMtlSensor/datalogMtlSensor.rls

99
100
101
102
103

Otherwise, we may not detect Overheat for a sensor like:

HighTemp("'sensor2",3.5,3.5).
HighTemp("sensor2",5.1,5.1).
HighTemp("'sensor2",10.0,10.0).
HighTemp("sensor2",14.7,14.7).
HighTemp("sensor2",20.0,20.0).

The translation has some limitations. Currently open in-
tervals are not supported but could potentially be modelled
with additional rules. Also, for programs with periodic solu-
tions, Nemo might run into termination issues. Non-recursive
programs with closed intervals are fully supported.

Other Translations into Existential Rules For many
other KR formalisms, translations into existential rules have
already been studied. We can directly use these to run the re-
spective formalisms within Nemo. No (further) restrictions
to fragments of the respective formalisms are necessary. This
subsection lists a few such ideas from different KR areas.
Stream reasoning is a temporal reasoning setting that re-
ceives its name from supporting streams of input data. For a
common stream reasoning framework, called LARS (Beck,
Dao-Tran, and Eiter 2018), recent work shows a translation
into existential rules (Urbani, Krotzsch, and Eiter 2022) that
preserves the semantics and can directly be used in Nemo.
Standpoint logic is a multi-modal framework that allows
reasoning with different interprations of the same underlying
ontology. It is in itself applicable to many other KR form-
alisms. For example, it allows the creation of the standpoint
description logic standpoint €L (Gémez Alvarez, Rudolph,
and Strass 2023). Similar to the £ L reasoning idea discussed
earlier in this section, we can leverage a translation into exist-
ential rules to support standpoint £ £ reasoning within Nemo.
Datalog(S) extends plain Datalog with a datatype for
sets (Carral et al. 2019b). The introducing paper also de-
scribes a translation into existential rules. Thereby, a set
datatype could be augmented in Nemo as well. In the fu-
ture, we still plan to have a native set datatype for efficiency.

5 Evaluation

In this section, we compare Nemo to several state-of-the-art
systems, and investigate the feasibility of using Nemo on
very large knowledge graphs. The goal of our comparative
evaluation is to position Nemo in relation to other highly
advanced systems, with a particular focus on features that
Nemo is aimed at. In particular, the evaluation should not be
misunderstood as an absolute ranking of systems: each sys-
tem has additional strengths beyond those considered here,
which make it superior for corresponding use cases.

To select a representative set of systems to compare to, we
focus on actively developed, mature systems from a range of
application areas. We have arrived at the following list:

Souffié Originally developed for rule-based program ana-
lysis (Jordan, Scholz, and Subotic 2016), Soufflé is one of
most active and advanced open-source Datalog reasoners
today, with many additional features. It is the only tool in our
list that supports a special compiled mode, where rule sets

are first transformed into C programs, which that are then
compiled to obtain an optimised reasoner.

Gringo Developed as the grounder for the ASP tool clingo
(Gebser et al. 2019), this system is in fact a high-performing
Datalog engine in its own right. It also supports a variety of
language features from ASP.

RDFox Evolved from an academic open-source system
(Nenov et al. 2015), RDFox has been developed into a ma-
ture commercial product in recent years. It has a strong focus
on the RDF data model and knowledge graph processing.
RDFox is not open-source software.

VLog Designed as a plain Datalog engine and existential
rule reasoner, VLog also provides basic RDF compatibility
and can process large knowledge graphs (Carral et al. 2019a).
Some of the basic implementation approaches in Nemo were
based on our earlier experience with VLog, making it espe-
cially interesting for comparing performance.

5.1 Feature Comparison

We qualitatively compare the chosen systems with respect
to their overall features, and have compiled the results in
Table 1. The information in this table is taken from the on-
line documentation of the individual tools. Some common as-
pects were not mentioned, e.g., all systems are main-memory
based and rely on materialisation (bottom-up reasoning) as
their main approach.

Most features listed in Table 1 should be self-explaining.
All systems except VLog have had recent releases, and all
provide a range of APIs and user interfaces. Soufflé mentions
a Web interface on its web site, but the server was unreachable
at the time of this writing. Besides Nemo, also Clingo and
Soufflé offer VS Code extensions. Nemo, RDFox, and Soufflé
all have tracing capabilities that return single proof trees.

We distinguish basic types for simple data literals from
complex types, which represent structured data objects. We
omit some details, e.g., the fact that some tools have several
integer types. The row RDF types states if a tool can handle
the rich set of types in the RDF standard, syntactically and
semantically, VLog is special here in that it can process RDF
syntax faithfully, but internally treats all values as strings.
The type model states if a tool accepts arbitrary data in all
contexts (dynamic) or requires a fixed schema to be given
with the rules (static).

All tools support negation, and all except VLog support
some form of aggregation. Both features do typically require
stratification, unless clingo is used for full ASP reasoning.
RDFox has by far the largest list of supported aggregates,
not fully listed in the table. Gringo supports a special sum+
aggregate that computes a monotonic sum by ignoring neg-
ative values, which is useful with recursive, non-stratified
aggregates (which the other tools do not allow). All tools can
simulate existential rules, sometimes with effort on the user
side, but only Nemo and VLog seem to support the standard
(restricted) chase. Nemo and RDFox feature the largest sets
of built-in functions, whereas Gringo and Soufflé provide
extension points for defining own functions by custom im-
plementations. All tools except Gringo can import data from

Nemo Gringo/Clingo
Latest version 0.5.1 (Jun 2024) 5.7.1 (Feb 2024)
License Apache2.0/MIT MIT
Language Rust C++
Further APIs Python, JavaScript Rust, Python, Java,
Haskell, Prolog,
JavaScript
Uls command-line, command-line,
Web (WASM) Web (WASM)
IDEs VS Code VS Code
Rule processing interpreted interpreted
Explanation proof tree —
Basic types int, str, float, bool int, str
Complex types — function terms
RDF types v —
Data model relational relational
Type model dynamic dynamic
Negation stratified arbitrary
Aggregation stratified arbitrary
Aggregates sum, count, min, sum(+), count,
max min, max
Existentials v (standard) — (skolem?)
Functions arithmetic, string, arithmetic,
SPARQL user-defined
Imports DSV, RDF (all) —
Exports DSV, RDF (all) facts, smodels

10 features

gzip, URL import

RDFox

7.1b (Jul 2024)
proprietary

C++

Java, HTTP, SPARQL

command-line, shell,
REST

interpreted

proof tree
int, str, float, bool
dates/times

v
triple/quad
dynamic
stratified
stratified

sum, count, min, max,
avg, sample, . . .

— (skolem®)

arithmetic, string,
SPARQL

DSV, RDF (all)

facts, RDF (all),
SPARQL

DBMS sources

“Function terms can be emulated in Soufflé with user-declared Algebraic Data Types.

bUsers can simulate a skolem chase by manually creating skolem function terms.
“The current RDFox manual does not mention existentials, but the function SKOLEM could be used to mint skolem terms manually.

Souffié

2.4.1 (Nov 2023)
UPL 1.0

C++

Java, Python

command-line,
Web (unavailable)

VS Code

interpreted,
compiled

proof tree
int, str, float, bool

records, function
terms?

relational
static
stratified
stratified

sum, count, min,
max

— (skolem?)

arithmetic, string,
user-defined

DSV, sqlite3
DSV, sqlite3

gzip

Table 1: Feature Comparison of Several Related Systems

VLog

1.3.6 (Dec 2022)
Apache 2.0

C++

Java

command-line

interpreted

str

(V') only in syntax
relational
dynamic
stratified

v (standard, skolem)

CSV, N-triples
CSv

gzip, SPARQL import

files in other formats, and RDFox further provides connectors
to database backends. In these rows, DSV denotes delimiter-
separated values (including CSV and TSV), whereas RDF
(all) stands for all RDF quad and triple syntaxes.

In summary, we find that all analysed systems in-
clude many application-oriented features, that support their
claimed maturity and illustrate their different application fo-
cus. VLog is the most limited, but we note that its Java API
Rulewerk (formerly Viog4j, (Carral et al. 2019a)) adds further
features not mentioned here, e.g., reading all RDF formats.

5.2 Performance Evaluation

Next, we evaluate the overall reasoning performance of Nemo
on materialisation tasks for Datalog and existential rules. Our
measurements are performed on a regular notebook (Dell
XPS 13; Ubuntu Linux 22.04; Intel i7-1165G7 @2.80GHz;
16GB RAM; 512 GB SSD). For this evaluation, we con-
sider the command-line clients of all open-source systems
discussed in Section 5.1, and additionally Nemo Web (Fire-

fox v125.0). For Soufflé, we evaluate the rule interpreter (i)
and the compiled mode (c). We do not evaluate RDFox here,
since our request for an academic license has not been gran-
ted at the time when this research was conducted.!3

For benchmarking plain Datalog, we consider the OWL
reasoning implementation of Section 4.3 for medical onto-
logies GALEN (EL version by Kazakov, Krétzsch, and Si-
mancik (2013)) and a version of SNOMED CT (a large
proprietary ontology). The OWL EL reasoner is a versatile
and challenging benchmark for plain Datalog, as it includes
strong recursive dependencies and longer rule bodies.

For existential rules, we consider several tasks from the
chase benchmark of Benedikt et al. (2017). Both DocToRrs-

13RDFox is a product of Oxford Semantic Technologies, which
has been acquired by Samsung during the time of this writing
(https://www.oxfordsemantic.tech/blog/samsung-electronics-
announces-acquisition-of-oxford-semantic-technologies-uk-based-
knowledge-graph-startup). This may explain the possibly temporary
disruption in the usual licensing process.

https://www.oxfordsemantic.tech/blog/samsung-electronics-announces-acquisition-of-oxford-semantic-technologies-uk-based-knowledge-graph-startup
https://www.oxfordsemantic.tech/blog/samsung-electronics-announces-acquisition-of-oxford-semantic-technologies-uk-based-knowledge-graph-startup
https://www.oxfordsemantic.tech/blog/samsung-electronics-announces-acquisition-of-oxford-semantic-technologies-uk-based-knowledge-graph-startup

Benchmark Rules Input Derivations Nemo
GALEN 12 143,480 1,881,946 54
SNOMED CT 12 1,554,340 24,428,006 76.4
Docrors-1M 5 9,515,900 792,500 3.3
ONT-256 529 2,146,490 5,673,985 14.2
LUBM-01k 136 133,573,854 186,742,694 167.6
DEeepr-100 1100 1,000 20,262 3.1
Deep-200 1200 1,000 982,501 8.0

Nemo Web Gringo Souffié (i) Soufflé (¢) VLog
8.8 22.0 13.7 10.4 42.7

129.6 95.4 157.5 114.9 oom

5.8 7.1 2.4 2.0 2.9

29.2 23.9 19.2 14.9 22.2

oom oom 170.4 145.7 188.4

5.4 0.3 27.6 timeout 232

13.9 timeout timeout timeout timeout

Table 2: Number of rules, input facts, derivations, and materialisation times in seconds (timeout: 30min, oom: out of memory)

IM and ONT-256 are benchmarks for data integration;
LUBM-01K is a widely used synthetic benchmark for se-
mantic web reasoning; and Deep-100 and Degp-200 are two
versions of a synthetic benchmark for existential rules de-
signed to exhibit worst-case complexity. All of the bench-
marks terminate under skolem and restricted chase.

Rules and inputs have been adopted to the capabilities
of the various systems. Data was provided in gzipped CSV
files, except for Gringo, which received a list of facts. Ex-
istential rules used the native restricted chase implement-
ation for Nemo and VLog, and were manually skolemised
for the other systems. In Soufflé, this required a new algeb-
raic type with a case for each skolem function. In general,
the skolem chase is easier to compute than the restricted
chase, but can lead to more redundant results (Benedikt et
al. 2017). Programs, datasets (except SNOMED), and meas-
urements for each system are online at https://github.com/
knowsys/nemo-examples/tree/main/evaluations/kr2024.

Table 2 shows statistics about the benchmarks, and total
runtimes (averaged across three runs), including both load-
ing and reasoning. Compilation time for Soufflé (c) is not
included. Fastest times are highlighted in bold for each
benchmark. With existential rules, the number of deriva-
tions may vary depending on the used chase algorithms and
internal choices regarding the application order of the rules,
but were still very similar across systems (shown numbers
are for Nemo). Command-line clients could use all system
memory, whereas Nemo Web is restricted to less than 4GB
(WebAssembly being 32bit).

All tested systems show very good performance on this
limited hardware. While some benchmarks seem particularly
difficult (SNOMED, LUBM, DEEP), each system shows spe-
cific strengths and weaknesses, which illustrates the great
variance of underlying implementation methods. Surpris-
ing cases include Deep-100, where Gringo is extremely fast
(and correct), and interpreted Soufflé is superior to the com-
piled version. Gringo struggles with very large input data
(LUBM-01K), but can still show excellent performance on
big ontologies (SNOMED CT). Moreover, we observe that
the performance advantage of Soufflé’s compiled code is not
decisive.

Nemo’s generally fares well in the comparison, with signi-
ficant performance advantages on plain Datalog and complex
existential rule sets, and very good overall consistency across
all tests. Nemo Web also performs very well for a system-
independent, browser-based application, and is just 1.6 — 2.0
times slower than the command-line client.

5.3 Processing Large Knowledge Graphs

To demonstrate Nemo’s ability to handle very large datasets,
we ran the program for selecting inverse properties described
in Section 4.2 on an RDF dump of Wikidata. We used the
Wikidata “truthy” dump of 11 May 2024, which contains
8.1 billion RDF triples (61 GB in gzipped N-Triples format).
A laptop does not suffice here, so we run on a mid-range
server (Linux NixOS 23.11; 2xQuadCore Intel Xeon E5-
2637@3.5GHz; 768GiB RAM; 2x3.5TB SSD).

Nemo could complete the reasoning task in about 8 hours.
Of this time, 475 min were spent on parsing the input RDF
file and creating sorted index structures, and 9.6 min were
used for the actual execution of rules. Nemo’s static query
optimiser chose to index all data in two orders, and 93min
of the 475min were used to build this (possibly avoidable)
second ordering. The two indices required a total of 220GB
of memory (not counting the string dictionary).

The overall performance makes the use of Nemo feasible
in practice, also given the complexity of the rules (with joins,
string comparisons, arithmetic operations, and aggregates).
For context, processing of Wikidata for Yago 4.5 took about
12 hours (Suchanek et al. 2024) (note that this is not the
same computational task, but it shows the typical time scale
of such analyses). We see a lot of potential in optimising
further for such very large data sets, e.g., by parallelising 1O.

6 Conclusions

Nemo is not just a single application, but a comprehensive
framework for rule reasoning, which includes a scalable rule
engine, a feature-rich rule language, and advanced user in-
terfaces with state-of-the-art developer support. We demon-
strate how Nemo can be of use in a wide variety of applica-
tions from the KR community. In spite of its many features,
Nemo exhibits competitive and reliable performance on di-
verse benchmarks.

Next on Nemo’s roadmap are improvements on the a wide
variety of aspects of the overall toolkit. Regarding express-
ive power, we plan to enhance Nemo with native support for
complex types, such as function terms and sets. User-defined
functions are considered as a way to add further flexibil-
ity and unlock additional use cases. Moreover, we consider
the support for non-stratified uses of aggregates, while still
maintaining declarativity.

Regarding performance, Nemo is currently running in a
single thread, and multi-threaded reasoning is a natural step
to boost performance further. Especially in developer tools
and the Nemo Web application, highlighting static analysis

https://github.com/knowsys/nemo-examples/tree/main/evaluations/kr2024
https://github.com/knowsys/nemo-examples/tree/main/evaluations/kr2024

results of programs, such as rule dependencies, and improved
support for tracing will not only simplify debugging but help
to achieve a more robust and explainable reasoning system.
In this respect, we also see the incorporation of techniques
for (non-)termination detection within the scope of the Nemo
toolkit. We hope that our efforts in making Nemo as robust
and convenient as possible will inspire further uses in the
KR community. We welcome feedback, feature requests, and
code contributions in our public repositories.

Acknowledgments

This work is partly supported by Deutsche Forschungsge-
meinschaft (DFG, German Research Foundation) in project
number 389792660 (TRR 248, Center for Perspicuous Sys-
tems), by the Bundesministerium fiir Bildung und Forschung
(BMBF, Federal Ministry of Education and Research) un-
der European ITEA project 011S21084 (InnoSale, Innovat-
ing Sales and Planning of Complex Industrial Products Ex-
ploiting Artifical Intelligence) and in the Center for Scalable
Data Analytics and Acrtificial Intelligence (ScaDS.AlI), and
by BMBF and DAAD (German Academic Exchange Ser-
vice) in project 57616814 (SECAI, School of Embedded and
Composite Al).

References

Aberger, C. R.; Tu, S.; Olukotun, K.; and Ré, C. 2016.
EmptyHeaded: A relational engine for graph processing. In
Ozcan, F.; Koutrika, G.; and Madden, S., eds., Proc. 2016
ACM SIGMOD Int. Conf. on Management of Data, 431-446.
ACM.

Aberger, C. R.; Lamb, A.; Tu, S.; Notzli, A.; Olukotun, K.;
and Ré, C. 2017. Emptyheaded: A relational engine for graph
processing. ACM Trans. Database Syst. 42(4):20:1-20:44.

Abiteboul, S.; Hull, R.; and Vianu, V. 1994. Foundations of
Databases. Addison Wesley.

Alviano, M., and Pieris, A., eds. 2024. Selected Papers
from Datalog 2.0 2022, volume 24(2) of Theory Pract. Log.
Program. Cambridge University Press.

Alviano, M.; Calimeri, F.; Faber, W.; Leone, N.; and Perri,
S. 2011. Unfounded sets and well-founded semantics of
answer set programs with aggregates. J. Artif. Intell. Res.
42:487-527.

Alviano, M.; Calimeri, F.; Dodaro, C.; Fusca, D.; Leone,
N.; Perri, S.; Ricca, F.; Veltri, P.; and Zangari, J. 2017.
The ASP system DLV2. In Balduccini, M., and Janhunen,
T., eds., Proc. 14th Int. Conf. on Logic Programming and
Nonmonotonic Reasoning (LPNMR’17), volume 10377 of
LNCS, 215-221. Springer.

Aref, M.; ten Cate, B.; Green, T. J.; Kimelfeld, B.; Olteanu,
D.; Pasalic, E.; Veldhuizen, T. L.; and Washburn, G. 2015.
Design and implementation of the LogicBlox system. In
Sellis, T.; Davidson, S.; and Ives, Z., eds., Proc. 2015 ACM
SIGMOD Int. Conf. on Mngmt of Data, 1371-1382.
Baader, F.; Brandt, S.; and Lutz, C. 2005. Pushing the ££
envelope. In Kaelbling, L., and Saffiotti, A., eds., Proc. 19th
Int. Joint Conf. on Artificial Intelligence (IJCAI’05), 364—
369. Professional Book Center.

Baget, J.; Leclere, M.; Mugnier, M.; Rocher, S.; and Sipieter,
C. 2015. Graal: A toolkit for query answering with existential
rules. In Bassiliades, N.; Gottlob, G.; Sadri, F.; Paschke, A.;
and Roman, D., eds., Proc. 9th Int. Web Rule Symposium
(RuleML’15), volume 9202 of LNCS, 328-344. Springer.

Beck, H.; Dao-Tran, M.; and Eiter, T. 2018. LARS: A logic-
based framework for analytic reasoning over streams. Artif.
Intell. 261:16-70.

Beeri, C., and Vardi, M. Y. 1981. The implication problem
for data dependencies. In Even, S., and Kariv, O., eds., Proc.
8th Colloquium on Automata, Languages and Programming
(ICALP’81), volume 115 of LNCS, 73—85. Springer.

Bellomarini, L.; Sallinger, E.; and Gottlob, G. 2018. The
Vadalog system: Datalog-based reasoning for knowledge
graphs. Proc. VLDB Endowment 11(9):975-987.

Benedikt, M.; Konstantinidis, G.; Mecca, G.; Motik, B.; Pa-
potti, P.; Santoro, D.; and Tsamoura, E. 2017. Benchmarking
the chase. In Proc. 36th Symp. on Principles of Database
Systems (PODS’17), 37-52. ACM.

Bizer, C.; Lehmann, J.; Kobilarov, G.; Auer, S.; Becker, C.;
Cyganiak, R.; and Hellmann, S. 2009. DBpedia — A crys-
tallization point for the Web of Data. J. of Web Semantics
7(3):154-165.

Bourgaux, C.; Carral, D.; Krotzsch, M.; Rudolph, S.; and
Thomazo, M. 2021. Capturing homomorphism-closed de-
cidable queries with existential rules. In Bienvenu, M.; Lake-
meyer, G.; and Erdem, E., eds., Proceedings of the 18th In-
ternational Conference on Principles of Knowledge Repres-

entation and Reasoning, KR 2021, Online event, November
3-12, 2021, 141-150.

Brandt, S.; Kalayci, E. G.; Ryzhikov, V.; Xiao, G.; and Za-
kharyaschev, M. 2018. Querying log data with metric tem-
poral logic. J. Artif. Intell. Res. 62:829-877.

Calimeri, F.; Faber, W.; Gebser, M.; Ianni, G.; Kaminski,
R.; Krennwallner, T.; Leone, N.; Maratea, M.; Ricca, F.; and
Schaub, T. 2020. ASP-Core-2 input language format. Theory
Pract. Log. Program. 20(2):294-309.

Carral, D.; Dragoste, 1.; Gonzélez, L.; Jacobs, C.; Krotzsch,
M.; and Urbani, J. 2019a. VLog: A rule engine for knowledge
graphs. In Ghidini et al., C., ed., Proc. 18th Int. Semantic
Web Conf. (ISWC’19, Part 1), volume 11779 of LNCS, 19—
35. Springer.

Carral, D.; Dragoste, I.; Krotzsch, M.; and Lewe, C. 2019b.
Chasing sets: How to use existential rules for expressive
reasoning. In Kraus, S., ed., Proc. 28th Int. Joint Conf. on
Artificial Intelligence (IJCAI’19), 1624—-1631. ijcai.org.

Carral, D.; Dragoste, 1.; and Krotzsch, M. 2017. Restricted
chase (non)termination for existential rules with disjunctions.
In Sierra, C., ed., Proc. 26th Int. Joint Conf. on Artificial
Intelligence (IJCAI’17), 922-928. ijcai.org.

Cuenca Grau, B.; Horrocks, I.; Krotzsch, M.; Kupke, C.;
Magka, D.; Motik, B.; and Wang, Z. 2012. Acyclicity condi-
tions and their application to query answering in description
logics. In Brewka, G.; Eiter, T.; and Mcllraith, S. A., eds.,
Proc. 13th Int. Conf. on Principles of Knowledge Represent-
ation and Reasoning (KR’12), 243-253. AAAI Press.

https://www.perspicuous-computing.science/
https://www.perspicuous-computing.science/
https://www.innosale.eu/
https://www.innosale.eu/
https://www.innosale.eu/
https://www.scads.de/
https://www.scads.de/
https://scads.ai/
https://www.secai.org/
https://www.secai.org/
https://www.secai.org/

Cyganiak, R.; Wood, D.; and Lanthaler, M., eds. 2014. RDF
1.1 Concepts and Abstract Syntax. W3C Recommendation.
Auvailable at http://www.w3.org/TR/rdf11-concepts/.

Deutsch, A.; Nash, A.; and Remmel, J. B. 2008. The chase
revisited. In Lenzerini, M., and Lembo, D., eds., Proc. 27th
Symp. on Principles of Database Systems (PODS’08), 149—
158. ACM.

Elhalawati, A.; Krotzsch, M.; and Mennicke, S. 2022. An
existential rule framework for computing why-provenance
on-demand for datalog. In Governatori, G., and Turhan,
A., eds., Proc. 2nd Int. Joint Conf. on Rules and Reason-
ing (RuleML+RR’22), volume 13752 of LNCS, 146-163.
Springer.

Ellmauthaler, S.; Krotzsch, M.; and Mennicke, S. 2022.
Answering queries with negation over existential rules. In
Proc. 36th AAAI Conf. on Artificial Intelligence (AAAI’22),
5626-5633.

Fagin, R.; Kolaitis, P. G.; Miller, R. J.; and Popa, L. 2005.
Data exchange: semantics and query answering. Theoretical
Computer Science 336(1):89-124.

Fredkin, E. 1960.
3(9):490-499.

Gebser, M.; Kaminski, R.; Kaufmann, B.; and Schaub, T.
2019. Multi-shot ASP solving with clingo. Theory Pract.
Log. Program. 19(1):27-82.

Gebser, M.; Kaufmann, B.; and Schaub, T. 2012. Conflict-
driven answer set solving: From theory to practice. Artif.
Intell. 187:52-89.

Gerlach, L., and Carral, D. 2023a. Do Repeat Yourself:
Understanding Sufficient Conditions for Restricted Chase
Non-Termination. In Proceedings of the 20th International
Conference on Principles of Knowledge Representation and
Reasoning, 301-310.

Gerlach, L., and Carral, D. 2023b. General acyclicity and
cyclicity notions for the disjunctive skolem chase. In Willi-
ams, B.; Chen, Y.; and Neville, J., eds., Thirty-Seventh AAAI
Conference on Artificial Intelligence, AAAI 2023, Thirty-
Fifth Conference on Innovative Applications of Artificial In-
telligence, IAAI 2023, Thirteenth Symposium on Educational
Advances in Artificial Intelligence, EAAI 2023, Washington,
DC, USA, February 7-14, 2023, 6372-6379. AAAI Press.

Gogacz, T., and Marcinkowski, J. 2014. All-instances ter-
mination of chase is undecidable. In Esparza, J.; Fraigniaud,
P.; Husfeldt, T.; and Koutsoupias, E., eds., Proc. 41st Int. Col-
loquium on Automata, Languages, and Programming (IC-
ALP’14); Part II, volume 8573 of LNCS, 293-304. Springer.

Gogacz, T.; Marcinkowski, J.; and Pieris, A. 2020. All-
instances restricted chase termination. In Proceedings of the
39th ACM SIGMOD-SIGACT-SIGAI Symposium on Prin-
ciples of Database Systems, PODS’20, 245-258. New York,
NY, USA: Association for Computing Machinery.

Gonzalez, L.; Ivliev, A.; Krotzsch, M.; and Mennicke, S.
2022. Efficient dependency analysis for rule-based onto-
logies. In Sattler, U.; Hogan, A.; Keet, M.; Presutti, V.;
Almeida, J. P. A.; Takeda, H.; Monnin, P.; Pirro, G.; and
d’Amato, C., eds., Proc. 21st International Semantic Web

Trie memory. Commun. ACM

Conference (ISWC 2022), volume 13489 of LNCS, 267-283.
Springer.

Grahne, G., and Onet, A. 2018. Anatomy of the chase.
Fundam. Inform. 157(3):221-270.

Go6mez Alvarez, L. Rudolph, S.; and Strass, H. 2023. Push-
ing the boundaries of tractable multiperspective reasoning:
A deduction calculus for standpoint EL+. In Marquis, P.;
Son, T. C.; and Kern-Isberner, G., eds., Proc. 20th Int. Conf.
on Principles of Knowledge Representation and Reasoning
(KR’23), 333-343. 1JCAL

Hanisch, P., and Krotzsch, M. 2024. Chase termination
beyond polynomial time. Proc. ACM Manag. Data 2(2):93.

Harris, S., and Seaborne, A., eds. 21 March 2013. SPARQL
1.1 Query Language. W3C Recommendation. Available at
http://www.w3.org/TR/sparql11-query/.

Horridge, M.; Bechhofer, S.; and Noppens, O. 2007. Igniting
the OWL 1.1 touch paper: The OWL API. In Golbreich,
C.; Kalyanpur, A.; and Parsia, B., eds., Proc. OWLED 2007
Workshop on OWL: Experiences and Directions, volume 258
of CEUR Workshop Proceedings. CEUR-WS.org.

Ivliev, A.; Ellmauthaler, S.; Gerlach, L.; Marx, M.; MeiBner,
M.; Meusel, S.; and Krétzsch, M. 2023. Nemo: First glimpse
of a new rule engine. In Pontelli, E.; Costantini, S.; Dodaro,
C.; Gaggl, S. A.; Calegari, R.; d’Avila Garcez, A. S.; Fabi-
ano, F.; Mileo, A.; Russo, A.; and Toni, F., eds., Proc. 39th
Int. Conf. on Logic Programming (ICLP’23), volume 385 of
EPTCS, 333-335.

Jordan, H.; Scholz, B.; and Subotic, P. 2016. Souffié: On
synthesis of program analyzers. In Chaudhuri, S., and Farzan,
A., eds., Proc. 28th Int. Conf. on Computer Aided Verification
(CAV’16), Part 11, volume 9780 of LNCS, 422—430. Springer.

Kazakov, Y.; Krotzsch, M.; and Simancik, F. 2013. The
incredible ELK: From polynomial procedures to efficient
reasoning with £L£ ontologies. J. of Automated Reasoning
53:1-61.

Korner, P.; Leuschel, M.; Barbosa, J.; Costa, V. S.; Dahl, V.;
Hermenegildo, M. V.; Morales, J. F.; Wielemaker, J.; Diaz,
D.; and Abreu, S. 2022. Fifty years of Prolog and beyond.
Theory Pract. Log. Program. 22(6):776—858.

Krotzsch, M.; Rudolph, S.; and Hitzler, P. 2013. Complex-
ities of Horn description logics. ACM Trans. Comput. Logic
14(1):2:1-2:36.

Krotzsch, M. 201 1. Efficient rule-based inferencing for OWL
EL. In Walsh (2011), 2668-2673.

Krotzsch, M. 2020. Computing cores for existential rules
with the standard chase and ASP. In Calvanese, D.; Erdem,
E.; and Thielscher, M., eds., Proc. 17th Int. Conf. on Prin-
ciples of Knowledge Representation and Reasoning (KR’20),
603-613. IJCAL

Microsoft. 2024. Official page for Language Server Pro-
tocol. https://microsoft.github.io/language- server-protocol/,
accessed May 2024.

Medeiros, S., and Mascarenhas, F. 2018. Syntax error re-
covery in parsing expression grammars. In Haddad, H. M.;
Wainwright, R. L.; and Chbeir, R., eds., Proc. 33rd Annual

https://microsoft.github.io/language-server-protocol/

ACM Symposium on Applied Computing (SAC’18), 1195-
1202. ACM.

Motik, B.; Cuenca Grau, B.; Horrocks, I.; Wu, Z.; Fokoue,
A.;and Lutz, C., eds. 2009. OWL 2 Web Ontology Language:
Profiles. W3C Recommendation. Available at http://www.
w3.org/TR/owl2-profiles/.

Mugnier, M., and Thomazo, M. 2014. An introduction to
ontology-based query answering with existential rules. In
Koubarakis, M.; Stamou, G. B.; Stoilos, G.; Horrocks, I.;
Kolaitis, P. G.; Lausen, G.; and Weikum, G., eds., Reasoning
Web: Reasoning on the Web in the Big Data Era — 10th
International Summer School, volume 8714 of LNCS, 245—
278. Springer.

Nenov, Y.; Piro, R.; Motik, B.; Horrocks, I.; Wu, Z.; and
Banerjee, J. 2015. RDFox: A highly-scalable RDF store.
In et al., M. A., ed., Proc. 14th Int. Semantic Web Conf.
(ISWC’15), Part II, volume 9367 of LNCS, 3-20. Springer.

OWL Working Group, W. 2009. OWL 2 Web Ontology
Language: Document Overview. W3C Recommendation.
Available at http://www.w3.org/TR/owl2-overview/.

Ross, K. A., and Sagiv, Y. 1997. Monotonic aggregation in
deductive database. J. Comput. Syst. Sci. 54(1):79-97.

Seo, J.; Guo, S.; and Lam, M. S. 2015. SocialLite: An efficient
graph query language based on datalog. IEEE Trans. Knowl.
Data Eng. 27(7):1824-1837.

Simancik, F.; Kazakov, Y.; and Horrocks, I. 2011.
Consequence-based reasoning beyond Horn ontologies. In
Walsh (2011), 1093-1098.

Suchanek, F. M.; Alam, M.; Bonald, T.; Chen, L.; Paris, P.;
and Soria, J. 2024. YAGO 4.5: A large and clean know-
ledge base with a rich taxonomy. In Yang, G. H.; Wang, H.;
Han, S.; Hauff, C.; Zuccon, G.; and Zhang, Y., eds., Proc.
47th Int. ACM SIGIR Conf. on Research and Development in
Information Retrieval (SIGIR’24), 131-140. ACM.

ter Horst, H. J. 2005. Completeness, decidability and com-
plexity of entailment for RDF Schema and a semantic ex-
tension involving the OWL vocabulary. J. of Web Semantics
3(2-3):79-115.

Urbani, J.; Jacobs, C.; and Krotzsch, M. 2016. Column-
oriented Datalog materialization for large knowledge graphs.
In Schuurmans, D., and Wellman, M. P, eds., Proc. 30th
AAAI Conf. on Artificial Intelligence (AAAI'16), 258-264.
AAAI Press.

Urbani, J.; Krotzsch, M.; and Eiter, T. 2022. Chasing Streams
with Existential Rules. In Proceedings of the 19th Interna-
tional Conference on Principles of Knowledge Representa-
tion and Reasoning, 415-419.

Veldhuizen, T. L. 2014. Triejoin: A simple, worst-case
optimal join algorithm. In Schweikardt, N.; Christophides,
V.; and Leroy, V., eds., Proc. 17th Int. Conf. on Database
Theory (ICDT’14), 96—-106.

Vrandecié, D., and Krotzsch, M. 2014. Wikidata: A free
collaborative knowledgebase. Commun. ACM 57(10).

Walsh, T., ed. 2011. Proc. 22nd Int. Joint Conf. on Artificial
Intelligence (IJCAI’'11). AAAI Press/IJCAL

Wang, D.; Hu, P.; Walega, P. A.; and Cuenca Grau, B. 2022.
Meteor: Practical reasoning in datalog with metric temporal
operators. In Proc. 36th AAAI Conf. on Artificial Intelligence
(AAAI’22), 5906-5913.

Zaniolo, C.; Yang, M.; Das, A.; Shkapsky, A.; Condie, T.; and
Interlandi, M. 2017. Fixpoint semantics and optimization of

recursive datalog programs with aggregates. Theory Pract.
Log. Program. 17(5-6):1048-1065.

http://www.w3.org/TR/owl2-profiles/
http://www.w3.org/TR/owl2-profiles/
http://www.w3.org/TR/owl2-overview/

	Introduction
	System Overview
	Language Features
	Application Areas
	Existential Rule Reasoning
	Knowledge Graph Processing
	Reasoner Prototyping

	Evaluation
	Feature Comparison
	Performance Evaluation
	Processing Large Knowledge Graphs

	Conclusions

