Graphs of bounded treewidth as a generalisation of (undirected) trees:

- Trees have treewidth 1
- Graphs of higher treewidth resemble trees with “thicker branches”
- It is (in theory) not hard to check if a graph has treewidth \(\leq k \) for some \(k \)
- It is (in theory) not hard to answer BCQs whose primal graph has a bounded treewidth

Practically feasible only for lower treewidths

However, bounded treewidth does not generalise the notion of hypergraph acyclicity (acyclic families of hypergraphs may have unbounded treewidth)

Is there a better notion of tree-likeness for hypergraphs?
Idea of Chekuri and Rajamaran [1997]:

- Create tree structure similar to tree decomposition
- But consider bags of query atoms instead of bags of variables
- Two connectedness conditions:
 1. Bags that refer to a certain variable must be connected
 2. Bags that refer to a certain query atom must be connected

Query width: least number of atoms needed in bags of a query decomposition

Theorem 8.1: Given a query decomposition for a BCQ, the query answering problem can be decided in time polynomial in the query width.
Theorem 8.2 (Gottlob et al. 1999): Deciding if a query has query width at most k is NP-complete.

In particular, it is also hard to find a query decomposition

\leadsto Query answering complexity drops from NP to P . . .

. . . but we need to solve another NP-hard problem first!
Gottlob, Leone, and Scarcello had another idea on defining tree-like hypergraphs:

Intuition:

- Combine key ideas of tree decomposition and query decomposition
- Start by looking at a tree decomposition
- But define the width based on query atoms:
 How many atoms do we need to cover all variables in a bag?

→ Generalised hypertree width
→ A technical condition is needed to get a simpler-to-check notion
Definition 8.3: Consider a hypergraph $G = \langle V, E \rangle$. A hypertree decomposition of G is a tree structure T where each node n of T is associated with a bag of variables $B_n \subseteq V$ and with a set of edges $G_n \subseteq E$, such that:

- T with B_n yields a tree decomposition of the primal graph of G.
- For each node n of T:
 1. the vertices used in the edges G_n are a superset of B_n,
 2. if a vertex v occurs in an edge of G_n and this vertex also occurs in B_m for some node m below n in T, then $v \in B_n$.

The width to T is the largest number of edges in a set G_n.
The hypertree width of G, $hw(G)$, is the least width of its hypertree decompositions.

((2) is the “special condition”: without it we get the generalised hypertree width)
Hypertree Width: Example

Special condition violated \Rightarrow no hypertree decomposition
\Rightarrow But generalised hypertree decomposition of width 2
Hypertree Width: Example

Special condition satisfied \leadsto hypertree decomposition of width 3
Observation 8.4: If $\langle T, (B_n), (G_n) \rangle$ is a hypertree decomposition for a hypergraph $\langle V, E \rangle$, then the union of all sets G_n might be a proper subset of E.

Proof: Indeed, we only require that every bag B_n is “covered” by the edges in G_n, not that every edge in E is actually used for this purpose. □

Observation 8.5: If $\langle T, (B_n), (G_n) \rangle$ is a hypertree decomposition for a hypergraph $\langle V, E \rangle$, then, for every hyperedge $e \in E$, there is a node n in T such that $e \subseteq B_n$.

Proof: Since $T, (B_n)$ is a tree decomposition of the primal graph, and every edge $e \in E$ gives rise to a $|e|$-clique in this graph, the variables of e must occur together in one bag of the tree decomposition. □
Complete Hypertree Decompositions

We can make sure that all atoms are in fact used in some set G_n of the decomposition:

Theorem 8.6: If $\langle T, (B_n), (G_n) \rangle$ is a (generalised) hypertree decomposition for a hypergraph $\langle V, E \rangle$, then there is a (generalised) hypertree decomposition $\langle T', (B'_n), (G'_n) \rangle$ of the same width and of size $O(|T| + |E|)$ such that, for all $e \in E$, there is a node n in T' with $e \in G'_n$.

Proof: For every edge $e \in E$ that does not appear in (G_n) yet:

- extend T with a new node m that is a child of an existing node n with $e \subseteq G_n$ (this must exist as just observed)
- define $B_m = e$ and $G_m = \{e\}$

This establishes the claim for e and preserves all conditions in the definition of (generalised) hypertree decomposition.

Such hypertree decompositions are called complete.
Theorem 8.7: A hypergraph is acyclic if and only if it has hypertree width 1.

Proof: (\Rightarrow) Recall that an acyclic hypergraph has a join tree:

- A tree structure T
- where each node is associated with a single edge
- such that, for any vertex v, the nodes with edges that mention v are a subtree of T

This easily corresponds to a hypertree decomposition (using the same tree structure, singleton edge sets $G_n = \{e\}$ and vertex bags $B_n = e$ if n is associated with e)
Theorem 8.7: A hypergraph is acyclic if and only if it has hypertree width 1.

Proof: (⇐) For a hypergraph \(\langle V, E \rangle \), consider a hypertree decomposition \(\langle T, (B_n), (G_n) \rangle \) of width 1 that is complete (w.l.o.g.).

We modify the decomposition so that, for every edge \(e \in E \), there is exactly one node \(n_e \) in \(T \) such that \(G_{n_e} = \{e\} \) and \(B_{n_e} = e \):

\begin{itemize}
 \item Choose an arbitrary total order \(\prec \) on the nodes of \(T \)
 \item For each \(e \in E \):
 \begin{itemize}
 \item Find the \(\prec \)-least node \(n_e \) of \(T \) with \(G_{n_e} = \{e\} \) and \(B_{n_e} = e \)
 (exists since we have a complete decomposition of width 1)
 \item For every node \(n \) with \(G_n = \{e\} \): re-attach all children of \(n \) to \(n_e \) and delete \(n \)
 \end{itemize}
\end{itemize}

The modified hypertree decomposition corresponds to a join tree:

\begin{itemize}
 \item each node is associated with a single edge
 \item no edge is associated with more than one node
 \item the vertices satisfy the connectedness condition for join trees
 (since \(T \) is a tree decomposition of the primal graph)
\end{itemize}

Hence the hypergraph has a join tree and is therefore acyclic. \(\square \)
Theorem 8.8: For a BCQ of (generalised) hypertree width k, query answering can be decided in polynomial time (actually in LOGCFL).

Proof: Consider a BCQ q, a width-k hypertree decomposition $\langle T, (B_n), (G_n) \rangle$ of (the hypergraph of) q, and a database instance I.

We first construct a modified BCQ q', hypertree decomposition $\langle T, (B_n), (G'_n) \rangle$ of q', and a database instance I', such that $I \models q$ iff $I' \models q'$ and $\bigcup G'_n = B_n$ for all nodes n of T:

- For each node n and atom $r(\vec{x}) \in G_n$
- create a new relation r' and let \vec{y} be a list of all variables in $\vec{x} \cap B_n$
- replace $r(\vec{x}) \in G_n$ by $r'(\vec{y}) \in G'_n$
- define r'^I' as the projection of r^I to \vec{y}

BCQ q', hypertree decomposition $\langle T, (B_n), (G'_n) \rangle$, and database instance I' are of size polynomial in the input.
Theorem 8.8: For a BCQ of (generalised) hypertree width k, query answering can be decided in polynomial time (actually in LOGCFL).

Proof: We claim that $I \models q$ iff $I' \models q'$.

(\Rightarrow) Every match of q on I is also a match of q' on I' since

- each atom in q' is just a restriction of an atom in q, and
- the corresponding relation in I' is a projection of the corresponding relation in I

(\Leftarrow) Every match of q' in I' is also a match of q in I since

- For every atom $r(\vec{x})$ of q, there is a node n of T with $\vec{x} \subseteq B_n$ (observed before)
- so $r(\vec{x})$ is an atom of q' as well
Theorem 8.8: For a BCQ of (generalised) hypertree width k, query answering can be decided in polynomial time (actually in LOGCFL).

Proof: We now construct an acyclic BCQ \bar{q}, database \bar{I}, and join tree J of \bar{q}, such that $\bar{I}' \models q'$ iff $\bar{I} \models \bar{q}$.

- The tree structure of J is the same as T
- For each node n of T:
 - we define a corresponding atom $r_n(\bar{x})$ of \bar{q} with variables $\bar{x} = B_n$,
 - let $r_n(\bar{x})$ be the atom at the node of J that corresponds to n, and
 - define $r_n^\bar{I}$ to be the natural join of the atoms in G'_n over \bar{I}'

Observations:
- The outcome is polynomial in size
- We find $\bar{I}' \models q'$ iff $\bar{I} \models \bar{q}$

The overall claim now follows by applying Yannakakis’ Algorithm to answer the query. \square
Hypertree Width: Results

- Relationships of hypergraph tree-likeness measures:
 - generalized hypertree width \leq hypertree width \leq query width
 (both inequalities might be $< $ in some cases)
- Acyclic graphs have hypertree width 1
- Deciding “query width $< k$?” is NP-complete
- Deciding “generalized hypertree width < 4?” is NP-complete
- Deciding “hypertree width $< k$?” is polynomial (LOGCFL)
- Hypertree decompositions can be computed in polynomial time if k is fixed

Theorem 8.9: For a BCQ of (generalised) hypertree width k, query answering can be decided in polynomial time, and is complete for LOGCFL.

… but the degree of the polynomial time bound is greater than k
Hypertree Width via Games

There is also a game characterisation of (generalised) hypertree width.

The Marshals-and-Robber Game

- The game is played on a hypergraph
- There are k marshals, each controlling one hyperedge, and one robber located at a vertex
- Otherwise similar to cops-and-robber game
- Special condition: Marshals must shrink the space that is left for the robber in every turn!

Hypertree width $\leq k$ if and only if k marshals have a winning strategy

\sim hypergraph is acyclic iff 1 marshal has a winning strategy
There is also a logical characterisation of hypertree width.

Loosely k-Guarded Logic

- Fragment of FO with \exists and \land
- Special form for all \exists subexpressions:

$$\exists x_1, \ldots, x_n.(G_1 \land \ldots \land G_k \land \varphi)$$

where G_i are atoms ("guards") and every variable that is free in φ occurs in one such atom G_i.

A query has hypertree width $\leq k$ if and only if it can be expressed as a loosely k-guarded formula

\mapsto tree queries correspond to loosely 1-guarded formulae

("loosely 1-guarded" logic is better known as guarded logic and widely studied)
Summary and Outlook

Besides tree queries, there are other important classes of CQs that can be answered in polynomial time:

- Bounded treewidth queries
- Bounded hypertree width queries

General idea: decompose the query in a tree structure

Other possible characterisations via games and logic

Open questions:

- What else is there besides query answering? \(\sim\) optimisation
- Measure expressivity rather than just complexity