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Organisation

Lectures
Monday, DS 2 (9:20–10:50), APB E009
Tuesday, DS 2 (9:20–10:50), APB E005

Exercise Sessions (starting 22 October)
Tuesday, DS 5 (14:50–16:20), APB E005

Web Page
https://iccl.inf.tu-dresden.de/web/Complexity_Theory_(WS2024)

Lecture Notes
Slides of current and past lectures will be online.
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Goals and Prerequisites

Goals
• Introduce basic notions of computational complexity theory

• Introduce commonly known complexity classes (P, NP, PSpace, . . . ) and
discuss relationships between them

• Develop tools to classify problems into their corresponding complexity classes

• Introduce some advanced topics of complexity theory (e.g., circuits,
probabilistic computation, quantum computing)

(Non-)Prerequisites
• No particular prior courses needed

• Prior acquaintance with Turing Machines and basic topics in formal languages and
complexity is helpful

• General mathematical and theoretical computer science skills necessary
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Reading List

• Michael Sipser: Introduction to the Theory of Computation, International
Edition; 3rd Edition; Cengage Learning 2013

• Sanjeev Arora and Boaz Barak: Computational Complexity: A Modern
Approach; Cambridge University Press 2009

• Michael R. Garey and David S. Johnson: Computers and Intractability; Bell
Telephone Laboratories, Inc. 1979

• Erich Grädel: Complexity Theory; Lecture Notes, Winter Term 2009/10

• John E. Hopcroft and Jeffrey D. Ullman: Introduction to Automata Theory,
Languages, and Computation; Addison Wesley Publishing Company 1979

• Christos H. Papadimitriou: Computational Complexity; 1995 Addison-Wesley
Publishing Company, Inc
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Computational Problems are Everywhere

Example 1.1:

• What are the factors of 54,623?

• What is the shortest route by car from Berlin to Hamburg?

• My program now runs for two weeks. Will it ever stop?

• Is this C++ program syntactically correct?

Clear
Computational Problems are ubiquitous in our everyday life!
And, depending on what we want to do, those problems might be either
easily solvable or hardly solvable.

Approach to problems:

[T]he way is to avoid what is strong, and strike at what is weak.

(Sun Tzu: The Art of War, Chapter 6: Weak Points and Strong)
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Examples

Example 1.2 (Shortest Path Problem): Given a weighted graph and two vertices
s, t, find the shortest path between s and t.

Easily solvable using, e.g., Dijkstra’s Algorithm.

Example 1.3 (Longest Path Problem): Given a weighted graph and two vertices
s, t, find the longest path between s and t.

No efficient algorithm known, and believed to not exist (this problem is NP-hard)

Observation
Difficulty of a problem is hard to assess
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Measuring the Difficulty of Problems

Question
How can we measure the complexity of a problem?

Approach
Estimate the resource requirements of the “best” algorithm that solves this problem.

Typical Resources:

• Running Time

• Memory Used

Note
To assess the complexity of a problem, we need to consider all possible algorithms
that solve this problem.

Markus Krötzsch; 14th Oct 2024 Complexity Theory slide 8 of 21



Measuring the Difficulty of Problems

Question
How can we measure the complexity of a problem?

Approach
Estimate the resource requirements of the “best” algorithm that solves this problem.

Typical Resources:

• Running Time

• Memory Used

Note
To assess the complexity of a problem, we need to consider all possible algorithms
that solve this problem.

Markus Krötzsch; 14th Oct 2024 Complexity Theory slide 8 of 21



Measuring the Difficulty of Problems

Question
How can we measure the complexity of a problem?

Approach
Estimate the resource requirements of the “best” algorithm that solves this problem.

Typical Resources:

• Running Time

• Memory Used

Note
To assess the complexity of a problem, we need to consider all possible algorithms
that solve this problem.

Markus Krötzsch; 14th Oct 2024 Complexity Theory slide 8 of 21



Problems

What actually is . . . a Problem?
(Decision) Problems are word problems of particular languages.

Example 1.4: “Problem: Is a given graph connected?” will be modelled as the
word problem of the language

GCONN B { ⟨G⟩ | G is a connected graph }.

Then for a graph G we have

G is connected ⇐⇒ ⟨G⟩ ∈ GCONN.

Note
The notation ⟨G⟩ denotes a suitable encoding of the graph G over some fixed alphabet
(e.g., { 0, 1 }).
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Algorithms

What actually is . . . an Algorithm?

Different approaches to formalise the notion of an “algorithm”

• Turing Machines

• Lambda Calculus

• µ-Recursion

• . . .

aba c ␣

q1

. . .
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Avoid What is Strong

Suppose we are given a language L and a word w.

Question
Does there need to exist any algorithm that decides whether w ∈ L?

Answer
No. Some problems are undecidable.

Example 1.5:

• The Halting Problem of Turing machines

• The Entscheidungsproblem (Is a first-order logical statement true?)

• Finding the lowest air fare between two cities (→ Reference)

• Deciding syntactic validity of C++ programs (→ Reference)

Avoid: We will focus mostly on decidable problems in this course.
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Time and Space

Difficulty
Measuring running time and memory requirements depends highly on the machine,
and not so much on the problem.

Resort
Measure time and space only asymptotically using Big-O-Notation:

f (n) = O(g(n)) ⇐⇒ f (n) “asymptotically bounded by” g(n)

More formally:

f (n) = O(g(n)) ⇐⇒ ∃c > 0∃n0 ∈ N∀n > n0 : f (n) ≤ c · g(n).
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Big-O-Notation: Example

100n3 + 1729n = O(n4):

0 2 4 6 8 10

0

0.5

1

·105
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Big-O-Notation: Example

100n3 + 1729n = O(n4):
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Complexity of Problems

Approach
The time (space) complexity of a problem is the asymptotic running time of a fastest
(least memory consumptive) algorithm that solves the problem.

Problem
Still too difficult . . .

Example 1.6 (Travelling Salesman Problem): Given a weighted graph, find the
shortest simple path visiting every node.

• Best known algorithm runs in time O(n22n)
(Bellman-Held-Karp algorithm)

• Best known lower bound is O(n log n)
• Exact complexity of TSP unknown
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Even more abstraction

Approach
Divide decision problems into the “quality” of their fastest algorithms:

• P is the class of problems solvable in polynomial time

• PSpace is the class of problems solvable in polynomial space

• ExpTime is the class of problems solvable in exponential time

• L is the class of problems solvable in logarithmic space
(apart from the input)

• NP is the class of problems verifiable in polynomial time

• NL is the class of problems verifiable in logarithmic space

And many more!
⊕P, #P, AC, AC0, ACC0, AM, AP, APSpace, BPL, BPP, BQP, coNP, E, FP, IP, MA, MIP,
NC, NExpTime, P/poly, PH, PP, RL, RP, Σp

i , TISP(T(n), S(n)), ZPP, . . .

Markus Krötzsch; 14th Oct 2024 Complexity Theory slide 15 of 21



Even more abstraction

Approach
Divide decision problems into the “quality” of their fastest algorithms:

• P is the class of problems solvable in polynomial time

• PSpace is the class of problems solvable in polynomial space

• ExpTime is the class of problems solvable in exponential time

• L is the class of problems solvable in logarithmic space
(apart from the input)

• NP is the class of problems verifiable in polynomial time

• NL is the class of problems verifiable in logarithmic space

And many more!
⊕P, #P, AC, AC0, ACC0, AM, AP, APSpace, BPL, BPP, BQP, coNP, E, FP, IP, MA, MIP,
NC, NExpTime, P/poly, PH, PP, RL, RP, Σp

i , TISP(T(n), S(n)), ZPP, . . .

Markus Krötzsch; 14th Oct 2024 Complexity Theory slide 15 of 21



Even more abstraction

Approach
Divide decision problems into the “quality” of their fastest algorithms:

• P is the class of problems solvable in polynomial time

• PSpace is the class of problems solvable in polynomial space

• ExpTime is the class of problems solvable in exponential time

• L is the class of problems solvable in logarithmic space
(apart from the input)

• NP is the class of problems verifiable in polynomial time

• NL is the class of problems verifiable in logarithmic space

And many more!
⊕P, #P, AC, AC0, ACC0, AM, AP, APSpace, BPL, BPP, BQP, coNP, E, FP, IP, MA, MIP,
NC, NExpTime, P/poly, PH, PP, RL, RP, Σp

i , TISP(T(n), S(n)), ZPP, . . .

Markus Krötzsch; 14th Oct 2024 Complexity Theory slide 15 of 21



Even more abstraction

Approach
Divide decision problems into the “quality” of their fastest algorithms:

• P is the class of problems solvable in polynomial time

• PSpace is the class of problems solvable in polynomial space

• ExpTime is the class of problems solvable in exponential time

• L is the class of problems solvable in logarithmic space
(apart from the input)

• NP is the class of problems verifiable in polynomial time

• NL is the class of problems verifiable in logarithmic space

And many more!
⊕P, #P, AC, AC0, ACC0, AM, AP, APSpace, BPL, BPP, BQP, coNP, E, FP, IP, MA, MIP,
NC, NExpTime, P/poly, PH, PP, RL, RP, Σp

i , TISP(T(n), S(n)), ZPP, . . .

Markus Krötzsch; 14th Oct 2024 Complexity Theory slide 15 of 21



Even more abstraction

Approach
Divide decision problems into the “quality” of their fastest algorithms:

• P is the class of problems solvable in polynomial time

• PSpace is the class of problems solvable in polynomial space

• ExpTime is the class of problems solvable in exponential time

• L is the class of problems solvable in logarithmic space
(apart from the input)

• NP is the class of problems verifiable in polynomial time

• NL is the class of problems verifiable in logarithmic space

And many more!
⊕P, #P, AC, AC0, ACC0, AM, AP, APSpace, BPL, BPP, BQP, coNP, E, FP, IP, MA, MIP,
NC, NExpTime, P/poly, PH, PP, RL, RP, Σp

i , TISP(T(n), S(n)), ZPP, . . .

Markus Krötzsch; 14th Oct 2024 Complexity Theory slide 15 of 21



Even more abstraction

Approach
Divide decision problems into the “quality” of their fastest algorithms:

• P is the class of problems solvable in polynomial time

• PSpace is the class of problems solvable in polynomial space

• ExpTime is the class of problems solvable in exponential time

• L is the class of problems solvable in logarithmic space
(apart from the input)

• NP is the class of problems verifiable in polynomial time

• NL is the class of problems verifiable in logarithmic space

And many more!
⊕P, #P, AC, AC0, ACC0, AM, AP, APSpace, BPL, BPP, BQP, coNP, E, FP, IP, MA, MIP,
NC, NExpTime, P/poly, PH, PP, RL, RP, Σp

i , TISP(T(n), S(n)), ZPP, . . .

Markus Krötzsch; 14th Oct 2024 Complexity Theory slide 15 of 21



Even more abstraction

Approach
Divide decision problems into the “quality” of their fastest algorithms:

• P is the class of problems solvable in polynomial time

• PSpace is the class of problems solvable in polynomial space

• ExpTime is the class of problems solvable in exponential time

• L is the class of problems solvable in logarithmic space
(apart from the input)

• NP is the class of problems verifiable in polynomial time

• NL is the class of problems verifiable in logarithmic space

And many more!
⊕P, #P, AC, AC0, ACC0, AM, AP, APSpace, BPL, BPP, BQP, coNP, E, FP, IP, MA, MIP,
NC, NExpTime, P/poly, PH, PP, RL, RP, Σp

i , TISP(T(n), S(n)), ZPP, . . .

Markus Krötzsch; 14th Oct 2024 Complexity Theory slide 15 of 21



Even more abstraction

Approach
Divide decision problems into the “quality” of their fastest algorithms:

• P is the class of problems solvable in polynomial time

• PSpace is the class of problems solvable in polynomial space

• ExpTime is the class of problems solvable in exponential time

• L is the class of problems solvable in logarithmic space
(apart from the input)

• NP is the class of problems verifiable in polynomial time

• NL is the class of problems verifiable in logarithmic space

And many more!

⊕P, #P, AC, AC0, ACC0, AM, AP, APSpace, BPL, BPP, BQP, coNP, E, FP, IP, MA, MIP,
NC, NExpTime, P/poly, PH, PP, RL, RP, Σp

i , TISP(T(n), S(n)), ZPP, . . .

Markus Krötzsch; 14th Oct 2024 Complexity Theory slide 15 of 21



Even more abstraction

Approach
Divide decision problems into the “quality” of their fastest algorithms:

• P is the class of problems solvable in polynomial time

• PSpace is the class of problems solvable in polynomial space

• ExpTime is the class of problems solvable in exponential time

• L is the class of problems solvable in logarithmic space
(apart from the input)

• NP is the class of problems verifiable in polynomial time

• NL is the class of problems verifiable in logarithmic space

And many more!
⊕P, #P, AC, AC0, ACC0, AM, AP, APSpace, BPL, BPP, BQP, coNP, E, FP, IP, MA, MIP,
NC, NExpTime, P/poly, PH, PP, RL, RP, Σp

i , TISP(T(n), S(n)), ZPP, . . .

Markus Krötzsch; 14th Oct 2024 Complexity Theory slide 15 of 21



Strike at What is Weak

Approach (cf. Cobham–Edmonds Thesis)
The problems in P are “tractable” or “efficiently solvable”
(and those outside are not)

Example 1.7: The following problems are in P:

• Shortest Path Problem

• Satisfiability of Horn-Formulas

• Linear Programming

• Primality

Note
The Cobham-Edmonds-Thesis is only a rule of thumb: there are (practically) tractable
problems outside of P, and (practically) intractable problems in P.
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Friend or Foe?

Caveat
It is not known how big P is.
In particular, it is unknown whether P , NP or not.

Approach
Try to find out which problems in a class are at least as hard as others.
Complete problems are then the hardest problems of a class.

Example 1.8: Satisfiability of propositional formulas is NP-complete: if we can
efficiently decide whether a propositional formula is satisfiable, we can solve any
problem in NP efficiently.

But: we still do not know whether we can or cannot solve satisfiability efficiently. We only
know it will be difficult to find out . . .
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Learning Goals

• Get an overview over the foundations of Complexity Theory

• Gain insights into advanced techniques and results in Complexity Theory

• Understand what it means to “compute” something, and what the strengths and
limits of different computing approaches are

• Get a feeling of how hard certain problems are, and where this hardness comes
from

• Appreciate how very little we actually know about the computational complexity of
many problems
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Lecture Outline (1)

• Turing Machines (Revision)
Definition of Turing Machines; Variants; Computational Equivalence; Decidability
and Recognizability; Enumeration; Oracles

• Undecidability
Examples of Undecidable Problems; Mapping Reductions; Rice’s Theorem;
Recursion Theorem

• Time Complexity
Measuring Time Complexity; Many-One Reductions; Cook-Levin Theorem; Time
Complexity Classes (P, NP, ExpTime); NP-completeness; pseudo-NP-complete
problems

• Space Complexity
Space Complexity Classes (PSpace, L, NL); Savitch’s Theorem;
PSpace-completeness; NL-completeness; NL = coNL
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Lecture Outline (2)

• Diagonalisation
Hierarchy Theorems (det. Time, non-det. Time, Space); Gap Theorem;
Ladner’s Theorem; Relativisation; Baker-Gill-Solovay Theorem

• Alternation
Alternating Turing Machines; APTime = PSpace; APSpace = ExpTime;
Polynomial Hierarchy

• Circuit Complexity
Boolean circuits; alternative proof of Cook-Levin Theorem; parallel computation
(NC); P-completeness; P/poly; (Karp-Lipton Theorem, Meyer’s Theorem)

• Probabilistic Computation
Randomised complexity classes (RP, PP, BPP, ZPP); Sipser-Gács-Lautemann
Theorem

• Quantum Computing
Quantum mechanics for computer scientists, entanglement, quantum circuits, BQP

• Interactive Proofs
Prover and verifier; deterministic proof systems; probabilistic verifiers; the class IP
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Avoid what is Strong, and Strike at what is Weak

Sometimes the best way to solve a problem is to avoid it . . .
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