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Rules of inference play a major role in knowledge representation and rea-
soning, e.g., for consequence-based deduction calculi in DLs. Highly scalable
rule engines are available for the popular rule language Datalog [2,3,4,8,12,15],
and the ExpTime (combined) reasoning complexity of this logic suggests that
these engines could be exploited for reasoning in DLs. However, solving Exp-
Time-complete problems by translation to Datalog requires polynomially large
predicate arities [13] or exponentially many rules [6], neither of which is feasible.

To overcome this issue, we propose Datalog(S) – an extension of Datalog with
terms that represent sets – and we show that it can be used to express common
DL reasoning calculi by a simple translation of inference rules. Inspired by the
approach in [9], we encode ontologies as facts, while the deductive calculus is a
fixed Datalog(S) rule set. This extends and generalises an approach of Ortiz et
al. [13] by making sets data-dependent, leading to ExpTime data complexity.

The main novelty of our work is the insight that Datalog(S)-reasoning can be
encoded in theories of existential rules outside any known class, but for which the
standard chase procedure is guaranteed to terminate, producing a finite model
in exponential (i.e., worst-case optimal) time. This is surprising, as all previously
known concrete rule languages for which the chase terminates feature PTime
data complexity [5,11], which is strictly too weak for implementing DL reasoning
in this way. Our insight enables us to use existing rule reasoners for Datalog(S),
and therefore for DLs, and we show by empirical evaluation that this can lead
to feasible practical implementations even without extensive optimisation.

Datalog(S) is defined as a logic with two sorts: an object sort for regular do-
main elements, and a set sort for sets over the elements of this domain. We impose
certain syntactic restrictions that ensure finite object domains, and therefore fi-
nite (though exponentially larger) set domains. We provide built-in functions
{} and U for constructing set terms, and built-in predicates ∈ and ⊆ that can
be used in rule premises for accessing the contents of sets. For example, the
Datalog(S) rules below define a unary predicate for all non-empty sets of books:

book(x) → bookSet({x}) bookSet(X) ∧ bookSet(Y ) → bookSet(X UY )

The number of sets in a canonical model of these rules is exponential in the
number of elements classified as books in the input data, and this is the source
of the additional expressive power of Datalog(S).

We illustrate our approach by encoding the ExpTime-complete reasoning
task of classification for a Horn-ALC TBox into a Datalog(S) program. We
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(RA)
H v A

: H is active and A ∈ H Act(H) ∧ a ∈ H → Sc(H, a)

(Ru)
{H v Ai}n

i=1

H v C
:

n=0, H active,>vC ∈ T , or

n=1, A1 v C ∈ T , or

n=2, A1 u A2 v C ∈ T

Act(H) ∧ axv(c>, c) → Sc(H, c)

Sc(H, a1) ∧ axv(a1, c) → Sc(H, c)

Sc(H, a1) ∧ Sc(H, a2)
∧ axuv(a1, a2, c) → Sc(H, c)

(R+
∃ )

H v A

H v ∃R.B
: A v ∃R.B ∈ T Sc(H, a) ∧ axv∃(a, r, b) → Ex(H, r,{b})

(R−∃ )
H v ∃R.K K v A

H v B
: ∃R.A v B ∈ T Ex(H, r,K) ∧ Sc(K, a)

∧ ax∃v(a, r, b) → Sc(H, b)

(R⊥∃ )
H v ∃R.K K v ⊥

H v ⊥
Ex(H, r,K) ∧ Sc(K, c⊥) → Sc(H, c⊥)

(R∀)
H v ∃R.K H v A

H v ∃R.(K u B)
: A v ∀R.B ∈ T Ex(H, r,K) ∧ Sc(H, a) → Ex(H, r,{b}UK)

∧ axv∀(a, r, b) ∧ Act({b}UK)

Fig. 1. Classification Horn-ALC inference rules from [14] (left) and corresponding Dat-
alog(S) rule set R (right), where c> and c⊥ are constants, lower-case letters are object
variables, and upper-case letters are set variables

define a Horn-ALC TBox T as a set of axioms in the following normal form:
> v C, A v C, A u B v C, A v ∃R.C, ∃R.A v C, A v ⊥, A v ∀R.C,
where A,B,C are concept names, R is a role name, and >,⊥ are the top and
bottom concepts. Classification is the task of computing all axioms of the form
A v C that are entailed by T . We consider the consequence-driven classification
method for Horn-ALC proposed in [14], which is shown in Figure 1 (left) as a
set of inference rules. For an input TBox T , the rules produce inferences of the
form H v B and H v ∃R.K, with H,K representing conjunctions of concepts.
Rules (RA) and (Ru) are restricted to the set of active conjunctions, which
is initialised with all singleton conjunctions (i.e. concept names), and is further
extended with the new conjunctions derived by rule (R∀).

This classification calculus can be encoded as a Datalog(S) program consist-
ing of the rule set R shown Figure 1 (right), and a set of facts F(T ) encoding
the axioms in the input TBox: for example, an axiom A1 u A2 v C ∈ T will
be encoded as a fact axuv(A1, A2, C). Each of the Datalog(S) rules in the right
of Figure 1 corresponds to the inference rule on its left, where conjunctions are
represented as sets, predicates Sc and Ex encode inferences, and predicate Act
signals active conjunctions. These can be initialised by adding cn(a) to F(T ) for
each concept name a in T , and adding the rule cn(a) → Act({a}) to R. Rule
(R∀) shows how adding a concept name B to a conjunction of concept names K
can be encoded as the set union {B}UK, which results in a new active set. The
semantics of Datalog(S) rule set R can be captured by a set of existential rules for
which a standard chase variant that prioritises non-generating rules [10] is guar-
anteed to terminate for all inputs. This approach leads to an ExpTime-complete
(hence worst-case optimal) chase-based classification algorithm for Horn-ALC.

In summary, our proposed language Datalog(S) can be used to translate algo-
rithms of ExpTime-complete data complexity into programs with a fixed set of
existential rules. Besides providing an elegant, fully-declarative implementation
for DL reasoning, our approach can take advantage of rule engines capabilities.
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