Risk-Averse Optimization of Total Rewards in Markovian Models Using Deviation Measures
From International Center for Computational Logic
Risk-Averse Optimization of Total Rewards in Markovian Models Using Deviation Measures
Christel BaierChristel Baier, Jakob PiribauerJakob Piribauer, Maximilian StarkeMaximilian Starke
Christel Baier, Jakob Piribauer, Maximilian Starke
Risk-Averse Optimization of Total Rewards in Markovian Models Using Deviation Measures
In Rupak Majumdar, Alexandra Silva, eds., 35th International Conference on Concurrency Theory (CONCUR 2024), volume 311 of Leibniz International Proceedings in Informatics (LIPIcs), 9:1-9:20, 2024. Schloss Dagstuhl – Leibniz-Zentrum für Informatik
Risk-Averse Optimization of Total Rewards in Markovian Models Using Deviation Measures
In Rupak Majumdar, Alexandra Silva, eds., 35th International Conference on Concurrency Theory (CONCUR 2024), volume 311 of Leibniz International Proceedings in Informatics (LIPIcs), 9:1-9:20, 2024. Schloss Dagstuhl – Leibniz-Zentrum für Informatik
- Projekt:Project: CPEC, CeTI
- Forschungsgruppe:Research Group: Algebraische und logische Grundlagen der InformatikAlgebraic and Logical Foundations of Computer Science
@inproceedings{BPS2024,
author = {Christel Baier and Jakob Piribauer and Maximilian Starke},
title = {Risk-Averse Optimization of Total Rewards in Markovian Models
Using Deviation Measures},
editor = {Rupak Majumdar and Alexandra Silva},
booktitle = {35th International Conference on Concurrency Theory (CONCUR 2024)},
series = {Leibniz International Proceedings in Informatics (LIPIcs)},
volume = {311},
publisher = {Schloss Dagstuhl {\textendash} Leibniz-Zentrum f{\"{u}}r
Informatik},
year = {2024},
pages = {9:1-9:20},
doi = {10.4230/LIPIcs.CONCUR.2024.9}
}