Recurrent Neural Networks to Approximate the Semantics of Acceptable Logic Programs

From International Center for Computational Logic

Toggle side column

Recurrent Neural Networks to Approximate the Semantics of Acceptable Logic Programs

Steffen HölldoblerSteffen Hölldobler,  Yvonne KalinkeYvonne Kalinke,  Hans-Peter StörrHans-Peter Störr
Recurrent Neural Networks to Approximate the Semantics of Acceptable Logic Programs


Steffen Hölldobler, Yvonne Kalinke, Hans-Peter Störr
Recurrent Neural Networks to Approximate the Semantics of Acceptable Logic Programs
In J. Slaney G. Antoniou, eds., Advanced Topics in Artificial Intelligence - 11th Australian Joint Conference on Artifiial Intelligence (AI'98), volume 1502 of LNAI, 167-178, 1998. Springer
The final publication is available at Springer.
@inproceedings{HKS1998,
  author    = {Steffen H{\"{o}}lldobler and Yvonne Kalinke and Hans-Peter
               St{\"{o}}rr},
  title     = {Recurrent Neural Networks to Approximate the Semantics of
               Acceptable Logic Programs},
  editor    = {J. Slaney G. Antoniou},
  booktitle = {Advanced Topics in Artificial Intelligence - 11th Australian
               Joint Conference on Artifiial Intelligence (AI'98)},
  series    = {LNAI},
  volume    = {1502},
  publisher = {Springer},
  year      = {1998},
  pages     = {167-178}
}