Johannes Fichte: Unterschied zwischen den Versionen
Aus International Center for Computational Logic
Elisa Böhl (Diskussion | Beiträge) Keine Bearbeitungszusammenfassung |
Johannes Fichte (Diskussion | Beiträge) Keine Bearbeitungszusammenfassung |
||
Zeile 7: | Zeile 7: | ||
|Telefon=+49 351 463 43548 | |Telefon=+49 351 463 43548 | ||
|Email=johannes.fichte@tu-dresden.de | |Email=johannes.fichte@tu-dresden.de | ||
|Bild=Photo1.jpg | |||
|Bild= | |Info=My work interests in computational complexity theory and its applications. In particular I work on the understanding of the gap between intractability (strong theoretical evidence) and practical efficient solutions (industrial/structured setting). I consider the boolean satisfiability problem (SAT), answer-set programming (ASP), and related formalisms.<br/> | ||
|Info= | |||
I am happy to supervise theses of motivated students in topics related to my research area. If you have ideas or questions regarding possible topics, please contact me.<br/> | |||
|Info EN= | |Info EN=My work interests in computational complexity theory and its applications. In particular I work on the understanding of the gap between intractability (strong theoretical evidence) and practical efficient solutions (industrial/structured setting). I consider the boolean satisfiability problem (SAT), answer-set programming (ASP), and related formalisms.<br/> | ||
I am happy to supervise theses of motivated students in topics related to my research area. If you have ideas or questions regarding possible topics, please contact me.<br/> | |||
|DBLP=http://dblp.uni-trier.de/pers/hd/f/Fichte:Johannes_Klaus | |DBLP=http://dblp.uni-trier.de/pers/hd/f/Fichte:Johannes_Klaus | ||
|Google Scholar=https://scholar.google.de/citations?user=-yhf134AAAAJ&hl=en | |Google Scholar=https://scholar.google.de/citations?user=-yhf134AAAAJ&hl=en |
Version vom 22. Juni 2021, 11:33 Uhr
Dr. Johannes K. Fichte
Wissenschaftlicher Mitarbeiter
- johannes.fichte@tu-dresden.de
- +49 351 463 43548
My work interests in computational complexity theory and its applications. In particular I work on the understanding of the gap between intractability (strong theoretical evidence) and practical efficient solutions (industrial/structured setting). I consider the boolean satisfiability problem (SAT), answer-set programming (ASP), and related formalisms.
I am happy to supervise theses of motivated students in topics related to my research area. If you have ideas or questions regarding possible topics, please contact me.