Syntactic Interpolation for Tense Logics and Bi-Intuitionistic Logic via Nested Sequents

From International Center for Computational Logic

Toggle side column

Syntactic Interpolation for Tense Logics and Bi-Intuitionistic Logic via Nested Sequents

Tim LyonTim Lyon,  Alwen TiuAlwen Tiu,  Rajeev GoréRajeev Goré,  Ranald CloustonRanald Clouston
Syntactic Interpolation for Tense Logics and Bi-Intuitionistic Logic via Nested Sequents


Tim Lyon, Alwen Tiu, Rajeev Goré, Ranald Clouston
Syntactic Interpolation for Tense Logics and Bi-Intuitionistic Logic via Nested Sequents
In Maribel Fernández and Anca Muscholl, eds., 28th EACSL Annual Conference on Computer Science Logic (CSL 2020), volume 152, 28:1--28:16, 2020. Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik
  • KurzfassungAbstract
    We provide a direct method for proving Craig interpolation for a range of modal and intuitionistic logics, including those containing a “converse” modality. We demonstrate this method for classical tense logic, its extensions with path axioms, and for bi-intuitionistic logic. These logics do not have straightforward formalisations in the traditional Gentzen-style sequent calculus, but have all been shown to have cut-free nested sequent calculi. The proof of the interpolation theorem uses these calculi and is purely syntactic, without resorting to embeddings, semantic arguments, or interpreted connectives external to the underlying logical language. A novel feature of our proof includes an orthogonality condition for defining duality between interpolants.
  • Weitere Informationen unter:Further Information: Link
  • Forschungsgruppe:Research Group: Computational LogicComputational Logic
@inproceedings{LTGC2020,
  author    = {Tim Lyon and Alwen Tiu and Rajeev Gor{\'{e}} and Ranald Clouston},
  title     = {Syntactic Interpolation for Tense Logics and Bi-Intuitionistic
               Logic via Nested Sequents},
  editor    = {Maribel Fern{\'{a}}ndez and Anca Muscholl},
  booktitle = {28th {EACSL} Annual Conference on Computer Science Logic (CSL
               2020)},
  volume    = {152},
  publisher = {Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik},
  year      = {2020},
  pages     = {28:1--28:16},
  doi       = {10.4230/LIPIcs.CSL.2020.28}
}