ArticleJCSS16: Unterschied zwischen den Versionen
Aus International Center for Computational Logic
Claudia Carapelle (Diskussion | Beiträge) Keine Bearbeitungszusammenfassung |
Claudia Carapelle (Diskussion | Beiträge) Keine Bearbeitungszusammenfassung |
||
Zeile 4: | Zeile 4: | ||
|FurtherAuthors=Alexander Kartzow; Markus Lohrey; | |FurtherAuthors=Alexander Kartzow; Markus Lohrey; | ||
}} | }} | ||
{{ | {{Article | ||
|Referiert=1 | |Referiert=1 | ||
|Title=Satisfiability of | |Title=Satisfiability of ECTL* with Constraints | ||
|To appear= | |To appear=1 | ||
|Year= | |Year=2016 | ||
| | |Journal=Journal of Computer and System Sciences | ||
}} | }} | ||
{{Publikation Details | {{Publikation Details | ||
|Abstract=We show that satisfiability for | |Abstract=We show that satisfiability and finite satisfiability for ECTL* with equality-, order-, and modulo-constraints over the integers are decidable. Since ECTL* is a proper extension of CTL* this greatly improves the previously known decidability results for certain fragments of CTL*, e.g., the existential and positive fragments and EF. We also show that our choice of local constraints is necessary for the result in the sense that, if we add the possibility to state non-local constraints over the integers, the resulting logic becomes undecidable. | ||
|Link=http:// | |Link=http://authors.elsevier.com/sd/article/S002200001600012X | ||
|DOI Name=10. | |DOI Name=10.1016/j.jcss.2016.02.002 | ||
|Projekt=QuantLA | |Projekt=QuantLA | ||
|Forschungsgruppe=Automatentheorie | |Forschungsgruppe=Automatentheorie | ||
}} | }} | ||
{{ | {{Inproceedings | ||
|Referiert= | |Referiert=1 | ||
|Title=Satisfiability of ECTL* with | |Title=Satisfiability of ECTL* with constraints | ||
|To appear= | |To appear=0 | ||
|Year=2016 | |Year=2016 | ||
}} | }} |
Version vom 23. März 2016, 11:27 Uhr
Satisfiability of ECTL* with Constraints
Claudia CarapelleClaudia Carapelle, Alexander KartzowAlexander Kartzow, Markus LohreyMarkus Lohrey
Claudia Carapelle, Alexander Kartzow, Markus Lohrey
Satisfiability of ECTL* with Constraints
Journal of Computer and System Sciences, to appear
Satisfiability of ECTL* with Constraints
Journal of Computer and System Sciences, to appear
- KurzfassungAbstract
We show that satisfiability and finite satisfiability for ECTL* with equality-, order-, and modulo-constraints over the integers are decidable. Since ECTL* is a proper extension of CTL* this greatly improves the previously known decidability results for certain fragments of CTL*, e.g., the existential and positive fragments and EF. We also show that our choice of local constraints is necessary for the result in the sense that, if we add the possibility to state non-local constraints over the integers, the resulting logic becomes undecidable. - Weitere Informationen unter:Further Information: Link
- Projekt:Project: QuantLA
- Forschungsgruppe:Research Group: AutomatentheorieAutomata Theory
@article{CKL2016,
author = {Claudia Carapelle and Alexander Kartzow and Markus Lohrey},
title = {Satisfiability of {ECTL*} with Constraints},
journal = {Journal of Computer and System Sciences},
year = {2016},
doi = {10.1016/j.jcss.2016.02.002}
}