A {PSpace} Algorithm for Graded Modal Logic

Aus International Center for Computational Logic
Version vom 19. März 2015, 18:44 Uhr von Marcel Lippmann (Diskussion | Beiträge)
(Unterschied) ← Nächstältere Version | Aktuelle Version (Unterschied) | Nächstjüngere Version → (Unterschied)
Wechseln zu:Navigation, Suche

„July~7--10,“ befindet sich nicht in der Liste (Januar, Februar, März, April, Mai, Juni, Juli, August, September, Oktober, ...) zulässiger Werte für das Attribut „Month“.

Toggle side column

A {PSpace} Algorithm for Graded Modal Logic

S. TobiesS. Tobies
S. Tobies
A {PSpace} Algorithm for Graded Modal Logic
In H. {Ganzinger}, eds., Automated Deduction -- CADE-16, 16th International Conference on Automated Deduction, LNAI 1632, 52--66,  1999. Springer
  • KurzfassungAbstract
    We present a PSPACE algorithm that decides satisfiability of the graded

    logic Gr(K_R) - a natural extension of propositional modal logic K_R by counting expressions -which plays an important role in the area of knowledge representation. The algorithm employs a tableaux approach and is the first known algorithm which meets the lower bound for the complexity of the problem. Thus, we exactly fixe the complexity of the problem and refute a EXPTIME-hardness conjecture. This establishes a kind of ``theoretical

    benchmark that all algorithmic approaches can be measured with.
  • Forschungsgruppe:Research Group: AutomatentheorieAutomata Theory
The final publication is available at Springer.
@inproceedings{ Tobies-CADE-99,
  address = {Trento, Italy},
  author = {S. {Tobies}},
  booktitle = {Automated Deduction -- CADE-16, 16th International Conference on Automated Deduction},
  editor = {H. {Ganzinger}},
  month = {July~7--10,},
  pages = {52--66},
  publisher = {Springer-Verlag},
  series = {LNAI 1632},
  title = {A {PSpace} Algorithm for Graded Modal Logic},
  year = {1999},
}