Semantisches Browsen
Aus International Center for Computational Logic
Why-provenance — explaining why a query re … Why-provenance — explaining why a query result is obtained — is an essential asset for reaching the goal of Explainable AI. For instance, recursive (Datalog) queries may show unexpected derivations due to complex entanglement of database atoms inside recursive rule applications. Provenance, and why-provenance in particular, helps debugging rule sets to eventually obtain the desired set of rules. There are three kinds of approaches to computing why-provenance for Datalog in the literature: (1) the complete ones, (2) the approximate ones, and (3) the theoretical ones. What all these approaches have in common is that they aim at computing provenance for all IDB atoms, while only a few atoms might be requested to be explained. We contribute an on-demand approach: After deriving all entailed facts of a Datalog program, we allow for querying for the provenance of particular IDB atoms and the structures involved in deriving provenance are computed only then. Our framework is based on terminating existential rules, recording the different rule applications. We present two implementations of the framework, one based on the semiring solver FPsolve, the other one based Datalog(S), a recent extension of Datalog by set terms. We perform experiments on benchmark rule sets using both implementations and discuss feasibility of provenance on-demand.</br></br>The talk is based on the upcoming conference paper in RuleML+RR 2022 with Markus Krötzsch and Stephan Mennicke, the paper can be found through the following link: https://iccl.inf.tu-dresden.de/web/Inproceedings3342</br></br>The talk will take place in a hybrid fashion, physically in the seminar room, and online through the link:</br>https://bbb.tu-dresden.de/b/ali-zgz-l8d-52nttps://bbb.tu-dresden.de/b/ali-zgz-l8d-52n +
Why-provenance — explaining why a query re … Why-provenance — explaining why a query result is obtained — is an essential asset for reaching the goal of Explainable AI. For instance, recursive (Datalog) queries may show unexpected derivations due to complex entanglement of database atoms inside recursive rule applications. Provenance, and why-provenance in particular, helps debugging rule sets to eventually obtain the desired set of rules. There are three kinds of approaches to computing why-provenance for Datalog in the literature: (1) the complete ones, (2) the approximate ones, and (3) the theoretical ones. What all these approaches have in common is that they aim at computing provenance for all IDB atoms, while only a few atoms might be requested to be explained. We contribute an on-demand approach: After deriving all entailed facts of a Datalog program, we allow for querying for the provenance of particular IDB atoms and the structures involved in deriving provenance are computed only then. Our framework is based on terminating existential rules, recording the different rule applications. We present two implementations of the framework, one based on the semiring solver FPsolve, the other one based Datalog(S), a recent extension of Datalog by set terms. We perform experiments on benchmark rule sets using both implementations and discuss feasibility of provenance on-demand.</br></br>The talk is based on the upcoming conference paper in RuleML+RR 2022 with Markus Krötzsch and Stephan Mennicke, the paper can be found through the following link: https://iccl.inf.tu-dresden.de/web/Inproceedings3342</br></br>The talk will take place in a hybrid fashion, physically in the seminar room, and online through the link:</br>https://bbb.tu-dresden.de/b/ali-zgz-l8d-52nttps://bbb.tu-dresden.de/b/ali-zgz-l8d-52n +
Datum„Datum <span style="font-size:small;">(Date)</span>“ ist ein <a href="/web/Spezial:Datentypen/Date" title="Spezial:Datentypen/Date">Datentyp</a> für Datumswerte. Er wird Attributen mit Hilfe eines von <a rel="nofollow" class="external text" href="https://www.semantic-mediawiki.org/wiki/Help:Special_properties">Semantic MediaWiki</a> bereitgestellten, softwareseitig fest definierten Attributs (Spezialattribut), zugeordnet.
22. September 2022, 11:00:00 +
Vortrag +
Ali Elhalawati +
Anzeigetitel„Anzeigetitel <span style="font-size:small;">(Display title of)</span>“ ist ein softwareseitig fest definiertes Attribut, das einen eindeutigen Anzeigetitel zu einem Objekt speichert und ihm zuweist. Es wird von <a rel="nofollow" class="external text" href="https://www.semantic-mediawiki.org/wiki/Help:Special_properties">Semantic MediaWiki</a> zur Verfügung gestellt.
An Existential Rule Framework for Computing Why-Provenance On-Demand for Datalog +
Zuletzt geändert„Zuletzt geändert <span style="font-size:small;">(Modification date)</span>“ ist ein softwareseitig fest definiertes Attribut, das das Datum der letzten Änderung einer Seite speichert. Es wird von <a rel="nofollow" class="external text" href="https://www.semantic-mediawiki.org/wiki/Help:Special_properties">Semantic MediaWiki</a> zur Verfügung gestellt.
9. September 2022, 13:13:27 +
Hat Abfrage„Hat Abfrage <span style="font-size:small;">(Has query)</span>“ ist ein softwareseitig fest definiertes Attribut, das die Metainformationen einer Abfrage als <a rel="nofollow" class="external text" href="https://www.semantic-mediawiki.org/wiki/Subobject">Subobjekt</a> speichert. Es wird von <a rel="nofollow" class="external text" href="https://www.semantic-mediawiki.org/wiki/Help:Special_properties">Semantic MediaWiki</a> zur Verfügung gestellt.
Keine Attribute verlinken auf diese Seite.