Inproceedings3001: Unterschied zwischen den Versionen

Aus International Center for Computational Logic
Wechseln zu:Navigation, Suche
Tomas Masopust (Diskussion | Beiträge)
Keine Bearbeitungszusammenfassung
Markus Krötzsch (Diskussion | Beiträge)
K (Textersetzung - „|Forschungsgruppe=Knowledge Systems“ durch „|Forschungsgruppe=Wissensbasierte Systeme“)
 
(33 dazwischenliegende Versionen von 2 Benutzern werden nicht angezeigt)
Zeile 1: Zeile 1:
{{Publikation Erster Autor
{{Publikation Erster Autor
|ErsterAutorVorname=Štěpán
|ErsterAutorNachname=Holub
|ErsterAutorNachname=Holub
|ErsterAutorVorname=Štěpán
|FurtherAuthors=Galina Jirásková; Tomáš Masopust
}}
{{Publikation Author
|Rank=2
|Author=Galina Jirásková
}}
{{Publikation Author
|Rank=3
|Author=Tomáš Masopust  
}}
}}
{{Inproceedings
{{Inproceedings
|Referiert=W
|Referiert=1
|BibTex-ID=@inproceedings{DBLP:conf/mfcs/HolubJM14, author = {Stepan Holub and Galina Jir{\'{a}}skov{\'{a}} and Tom{\'{a}}s Masopust}, title = {On Upper and Lower Bounds on the Length of Alternating Towers}, booktitle = {Mathematical Foundations of Computer Science 2014 - 39th International Symposium, {MFCS} 2014, Budapest, Hungary, August 25-29, 2014. Proceedings, Part {I}}, year = {2014}, pages = {315--326}, crossref = {DBLP:conf/mfcs/2014-1}, url = {http://dx.doi.org/10.1007/978-3-662-44522-8_27}, doi = {10.1007/978-3-662-44522-8_27}, timestamp = {Thu, 02 Oct 2014 12:21:19 +0200}, biburl = {http://dblp.uni-trier.de/rec/bib/conf/mfcs/HolubJM14}, bibsource = {dblp computer science bibliography, http://dblp.org}
} @proceedings{DBLP:conf/mfcs/2014-1, editor    = {Erzs{\'{e}}bet Csuhaj{-}Varj{\'{u}} and Martin Dietzfelbinger and Zolt{\'{a}}n {\'{E}}sik}, title    = {Mathematical Foundations of Computer Science 2014 - 39th International Symposium, {MFCS} 2014, Budapest, Hungary, August 25-29, 2014. Proceedings, Part {I}}, series    = {Lecture Notes in Computer Science}, year      = {2014}, volume    = {8634}, publisher = {Springer}, url      = {http://dx.doi.org/10.1007/978-3-662-44522-8}, doi      = {10.1007/978-3-662-44522-8}, isbn      = {978-3-662-44521-1}, timestamp = {Thu, 02 Oct 2014 12:21:19 +0200}, biburl    = {http://dblp.uni-trier.de/rec/bib/conf/mfcs/2014-1}, bibsource = {dblp computer science bibliography, http://dblp.org}}
|Title=On Upper and Lower Bounds on the Length of Alternating Towers
|Title=On Upper and Lower Bounds on the Length of Alternating Towers
|To appear=0
|Year=2014
|Year=2014
|Month=August
|Booktitle=Mathematical Foundations of Computer Science (MFCS)
|Booktitle=Mathematical Foundations of Computer Science (MFCS)
|Pages=315-326
|Pages=315-326
|Publisher=Springer
|Publisher=Springer
|Number=8634
|Editor=E. Csuhaj-Varju, M. Dietzfelbinger, Z. Esik
|Volume=Lecture Notes in Computer Science
|Series=LNCS
|Volume=8634
}}
}}
{{Publikation Details
{{Publikation Details
|Abstract=A tower between two regular languages is a sequence of strings such that all strings on odd positions belong to one of the languages, all strings on even positions belong to the other language, and each string can be embedded into the next string in the sequence. It is known that if there are towers of any length, then there also exists an infinite tower. We investigate upper and lower bounds on the length of finite towers between two regular languages with respect to the size of the automata representing the languages in the case there is no infinite tower. This problem is relevant to the separation problem of regular languages by piecewise testable languages.
|Abstract=A tower between two regular languages is a sequence of strings such that all strings on odd positions belong to one of the languages, all strings on even positions belong to the other language, and each string can be embedded into the next string in the sequence. It is known that if there are towers of any length, then there also exists an infinite tower. We investigate upper and lower bounds on the length of finite towers between two regular languages with respect to the size of the automata representing the languages in the case there is no infinite tower. This problem is relevant to the separation problem of regular languages by piecewise testable languages.
|ISBN=978-3-662-44521-1
|ISBN=978-3-662-44521-1
|Download=MFCS2014.pdf
|DOI Name=10.1007/978-3-662-44522-8_27
|DOI Name=10.1007/978-3-662-44522-8_27
|Forschungsgruppe=Automata Theory
|Projekt=DIAMOND
|Forschungsgruppe=Wissensbasierte Systeme
}}
}}

Aktuelle Version vom 24. Mai 2016, 18:02 Uhr

Toggle side column

On Upper and Lower Bounds on the Length of Alternating Towers

Štěpán HolubŠtěpán Holub,  Galina JiráskováGalina Jirásková,  Tomáš MasopustTomáš Masopust
On Upper and Lower Bounds on the Length of Alternating Towers


Štěpán Holub, Galina Jirásková, Tomáš Masopust
On Upper and Lower Bounds on the Length of Alternating Towers
In E. Csuhaj-Varju, M. Dietzfelbinger, Z. Esik, eds., Mathematical Foundations of Computer Science (MFCS), volume 8634 of LNCS, 315-326, 2014. Springer
  • KurzfassungAbstract
    A tower between two regular languages is a sequence of strings such that all strings on odd positions belong to one of the languages, all strings on even positions belong to the other language, and each string can be embedded into the next string in the sequence. It is known that if there are towers of any length, then there also exists an infinite tower. We investigate upper and lower bounds on the length of finite towers between two regular languages with respect to the size of the automata representing the languages in the case there is no infinite tower. This problem is relevant to the separation problem of regular languages by piecewise testable languages.
  • Projekt:Project: DIAMOND
  • Forschungsgruppe:Research Group: Wissensbasierte SystemeKnowledge-Based Systems
The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-662-44522-8_27.
@inproceedings{HJM2014,
  author    = {{\v{S}}t{\v{e}}p{\'{a}}n Holub and Galina Jir{\'{a}}skov{\'{a}}
               and Tom{\'{a}}{\v{s}} Masopust},
  title     = {On Upper and Lower Bounds on the Length of Alternating Towers},
  editor    = {E. Csuhaj-Varju and M. Dietzfelbinger and Z. Esik},
  booktitle = {Mathematical Foundations of Computer Science (MFCS)},
  series    = {LNCS},
  volume    = {8634},
  publisher = {Springer},
  year      = {2014},
  pages     = {315-326},
  doi       = {10.1007/978-3-662-44522-8_27}
}