Article3084: Unterschied zwischen den Versionen

Aus International Center for Computational Logic
Wechseln zu:Navigation, Suche
Luisa Herrmann (Diskussion | Beiträge)
(Die Seite wurde neu angelegt: „{{Publikation Erster Autor |ErsterAutorVorname=Johannes |ErsterAutorNachname=Osterholzer |FurtherAuthors=Toni Dietze; Luisa Herrmann }} {{Article |Referiert=1…“)
 
Luisa Herrmann (Diskussion | Beiträge)
Keine Bearbeitungszusammenfassung
 
(2 dazwischenliegende Versionen desselben Benutzers werden nicht angezeigt)
Zeile 16: Zeile 16:
|Abstract=We prove that the class of linear context-free tree languages is not closed under inverse linear tree homomorphisms. In fact, we prove a stronger result: we encode Dyck words into a linear context-free tree language and prove that its preimage under a certain linear tree homomorphism cannot be generated by any context-free tree grammar. A positive result can still be obtained: the linear monadic context-free tree languages are closed under inverse linear tree homomorphisms.
|Abstract=We prove that the class of linear context-free tree languages is not closed under inverse linear tree homomorphisms. In fact, we prove a stronger result: we encode Dyck words into a linear context-free tree language and prove that its preimage under a certain linear tree homomorphism cannot be generated by any context-free tree grammar. A positive result can still be obtained: the linear monadic context-free tree languages are closed under inverse linear tree homomorphisms.
|DOI Name=https://doi.org/10.1016/j.ic.2019.104454
|DOI Name=https://doi.org/10.1016/j.ic.2019.104454
|Projekt=QuantLA
|Forschungsgruppe=Computational Logic
|Forschungsgruppe=Computational Logic
}}
{{Forschungsgebiet Auswahl
|Forschungsgebiet=Automatentheorie und formale Sprachen
}}
}}

Aktuelle Version vom 9. Juli 2024, 21:53 Uhr

Toggle side column

Linear context-free tree languages and inverse homomorphisms

Johannes OsterholzerJohannes Osterholzer,  Toni DietzeToni Dietze,  Luisa HerrmannLuisa Herrmann
Johannes Osterholzer, Toni Dietze, Luisa Herrmann
Linear context-free tree languages and inverse homomorphisms
Information and Computation, 269, 2019
  • KurzfassungAbstract
    We prove that the class of linear context-free tree languages is not closed under inverse linear tree homomorphisms. In fact, we prove a stronger result: we encode Dyck words into a linear context-free tree language and prove that its preimage under a certain linear tree homomorphism cannot be generated by any context-free tree grammar. A positive result can still be obtained: the linear monadic context-free tree languages are closed under inverse linear tree homomorphisms.
  • Projekt:Project: QuantLA
  • Forschungsgruppe:Research Group: Computational LogicComputational Logic
@article{ODH2019,
  author    = {Johannes Osterholzer and Toni Dietze and Luisa Herrmann},
  title     = {Linear context-free tree languages and inverse homomorphisms},
  journal   = {Information and Computation},
  volume    = {269},
  publisher = {Elsevier},
  year      = {2019},
  doi       = {https://doi.org/10.1016/j.ic.2019.104454}
}