Article3084: Unterschied zwischen den Versionen
Aus International Center for Computational Logic
Luisa Herrmann (Diskussion | Beiträge) (Die Seite wurde neu angelegt: „{{Publikation Erster Autor |ErsterAutorVorname=Johannes |ErsterAutorNachname=Osterholzer |FurtherAuthors=Toni Dietze; Luisa Herrmann }} {{Article |Referiert=1…“) |
Luisa Herrmann (Diskussion | Beiträge) Keine Bearbeitungszusammenfassung |
||
(2 dazwischenliegende Versionen desselben Benutzers werden nicht angezeigt) | |||
Zeile 16: | Zeile 16: | ||
|Abstract=We prove that the class of linear context-free tree languages is not closed under inverse linear tree homomorphisms. In fact, we prove a stronger result: we encode Dyck words into a linear context-free tree language and prove that its preimage under a certain linear tree homomorphism cannot be generated by any context-free tree grammar. A positive result can still be obtained: the linear monadic context-free tree languages are closed under inverse linear tree homomorphisms. | |Abstract=We prove that the class of linear context-free tree languages is not closed under inverse linear tree homomorphisms. In fact, we prove a stronger result: we encode Dyck words into a linear context-free tree language and prove that its preimage under a certain linear tree homomorphism cannot be generated by any context-free tree grammar. A positive result can still be obtained: the linear monadic context-free tree languages are closed under inverse linear tree homomorphisms. | ||
|DOI Name=https://doi.org/10.1016/j.ic.2019.104454 | |DOI Name=https://doi.org/10.1016/j.ic.2019.104454 | ||
|Projekt=QuantLA | |||
|Forschungsgruppe=Computational Logic | |Forschungsgruppe=Computational Logic | ||
}} | |||
{{Forschungsgebiet Auswahl | |||
|Forschungsgebiet=Automatentheorie und formale Sprachen | |||
}} | }} |
Aktuelle Version vom 9. Juli 2024, 21:53 Uhr
Linear context-free tree languages and inverse homomorphisms
Johannes OsterholzerJohannes Osterholzer, Toni DietzeToni Dietze, Luisa HerrmannLuisa Herrmann
Johannes Osterholzer, Toni Dietze, Luisa Herrmann
Linear context-free tree languages and inverse homomorphisms
Information and Computation, 269, 2019
Linear context-free tree languages and inverse homomorphisms
Information and Computation, 269, 2019
- KurzfassungAbstract
We prove that the class of linear context-free tree languages is not closed under inverse linear tree homomorphisms. In fact, we prove a stronger result: we encode Dyck words into a linear context-free tree language and prove that its preimage under a certain linear tree homomorphism cannot be generated by any context-free tree grammar. A positive result can still be obtained: the linear monadic context-free tree languages are closed under inverse linear tree homomorphisms. - Projekt:Project: QuantLA
- Forschungsgruppe:Research Group: Computational LogicComputational Logic
@article{ODH2019,
author = {Johannes Osterholzer and Toni Dietze and Luisa Herrmann},
title = {Linear context-free tree languages and inverse homomorphisms},
journal = {Information and Computation},
volume = {269},
publisher = {Elsevier},
year = {2019},
doi = {https://doi.org/10.1016/j.ic.2019.104454}
}