Article3039: Unterschied zwischen den Versionen
Aus International Center for Computational Logic
Tomas Masopust (Diskussion | Beiträge) (Die Seite wurde neu angelegt: „{{Publikation Erster Autor |ErsterAutorVorname=Tomáš |ErsterAutorNachname=Masopust }} {{Article |Referiert=1 |Title= Complexity of Infimal Observable Superla…“) |
Tomas Masopust (Diskussion | Beiträge) Keine Bearbeitungszusammenfassung |
||
Zeile 5: | Zeile 5: | ||
{{Article | {{Article | ||
|Referiert=1 | |Referiert=1 | ||
|Title= Complexity of Infimal Observable Superlanguages | |Title=Complexity of Infimal Observable Superlanguages | ||
|To appear= | |To appear=0 | ||
|Year=2018 | |Year=2018 | ||
|Journal=IEEE Transactions on Automatic Control | |Journal=IEEE Transactions on Automatic Control | ||
|Volume=63 | |||
|Number=1 | |||
|Pages=249-254 | |||
|Publisher=IEEE | |Publisher=IEEE | ||
}} | }} |
Aktuelle Version vom 28. Januar 2018, 10:54 Uhr
Complexity of Infimal Observable Superlanguages
Tomáš MasopustTomáš Masopust
Tomáš Masopust
Complexity of Infimal Observable Superlanguages
IEEE Transactions on Automatic Control, 63(1):249-254, 2018
Complexity of Infimal Observable Superlanguages
IEEE Transactions on Automatic Control, 63(1):249-254, 2018
- KurzfassungAbstract
The infimal prefix-closed, controllable and observable superlanguage plays an essential role in the relationshis between controllability, observability and co-observability -- the central notions of supervisory control. Existing algorithms for its computation are exponential and it is not known if a polynomial algorithm exists. We answer the question by studying the state complexity of this language. State complexity of a language is the number of states of its minimal DFA. For a language with state complexity n, we show that the upper-bound state complexity on the infimal prefix-closed and observable superlanguage is 2^n + 1 and that this bound is asymptotically tight. Hence there is no algorithm computing a DFA of the infimal prefix-closed and observable superlanguage in polynomial time. Our construction shows that such a DFA can be computed in time O(2^n). The construction involves NFAs and a computation of the supremal prefix-closed sublanguage. We study the computation of supremal prefix-closed sublanguages and show that there is no polynomial-time algorithm computing an NFA of the supremal prefix-closed sublanguage of a language given as an NFA even if the language is unary. - Weitere Informationen unter:Further Information: Link
- Projekt:Project: Cfaed, DIAMOND
- Forschungsgruppe:Research Group: Wissensbasierte SystemeKnowledge-Based Systems
@article{M2018,
author = {Tom{\'{a}}{\v{s}} Masopust},
title = {Complexity of Infimal Observable Superlanguages},
journal = {IEEE Transactions on Automatic Control},
volume = {63},
number = {1},
publisher = {IEEE},
year = {2018},
pages = {249-254},
doi = {10.1109/TAC.2017.2720424}
}