HUGS – A Lightweight Graph Partitioning Approach: Unterschied zwischen den Versionen
Aus International Center for Computational Logic
Tomas Masopust (Diskussion | Beiträge) (Die Seite wurde neu angelegt: „{{Veranstaltung |Titel EN=HUGS – A Lightweight Graph Partitioning Approach |Beschreibung EN=The growing interest in graph data lead to increasingly more rese…“) |
Irina Dragoste (Diskussion | Beiträge) Keine Bearbeitungszusammenfassung |
||
Zeile 11: | Zeile 11: | ||
|Vortragender=Alexander Krause | |Vortragender=Alexander Krause | ||
|Forschungsgruppe=Wissensbasierte Systeme | |Forschungsgruppe=Wissensbasierte Systeme | ||
|Event series=KBS Seminar | |||
|In News anzeigen=1 | |In News anzeigen=1 | ||
}} | }} |
Aktuelle Version vom 18. Oktober 2018, 05:36 Uhr
HUGS – A Lightweight Graph Partitioning Approach
Vortrag von Alexander Krause
- Veranstaltungsort: APB 3027
- Beginn: 8. Juni 2016 um 14:50
- Ende: 8. Juni 2016 um 15:50
- Forschungsgruppe: Wissensbasierte Systeme
- Event series: KBS Seminar
- iCal
The growing interest in graph data lead to increasingly more research in the field of graph data management and graph analytics. Nowadays, even large graphs of up to a size of billions of vertices and edges fit into main memory of big modern multisocket machines, making them a first-grade platform for graph management and graph analytics. High performance data management solutions have to be aware of the NUMA properties of such big machines. A data-oriented architecture (DORA) is a particular solution to that. However, it requires partitioning the data in a way such that inter-partition communication can be avoided.