Computing the lcs w.r.t.\ General $\mathcal{E\!L}^+$ {TB}oxes

Aus International Center for Computational Logic
Version vom 19. März 2015, 18:44 Uhr von Marcel Lippmann (Diskussion | Beiträge)
(Unterschied) ← Nächstältere Version | Aktuelle Version (Unterschied) | Nächstjüngere Version → (Unterschied)
Wechseln zu:Navigation, Suche

„July“ befindet sich nicht in der Liste (Januar, Februar, März, April, Mai, Juni, Juli, August, September, Oktober, ...) zulässiger Werte für das Attribut „Month“.

Toggle side column

Computing the lcs w.r.t.\ General $\mathcal{E\!L}^+$ {TB}oxes

Anni-Yasmin TurhanAnni-Yasmin Turhan,  Benjamin ZarrießBenjamin Zarrieß
Anni-Yasmin Turhan, Benjamin Zarrieß
Computing the lcs w.r.t.\ General $\mathcal{E\!L}^+$ {TB}oxes
In Thomas {Eiter} and Birte {Glimm} and Yevgeny {Kazakov} and Markus {Krötzsch}, eds., Proceedings of the 26th International Workshop on Description Logics ({DL-2013}), CEUR Workshop Proceedings, 477--488,  2013. CEUR-WS.org
  • KurzfassungAbstract
    Recently, exact conditions for the existence of the least common subsumer (lcs) computed
     w.r.t.\ general $\mathcal{EL}$-TBoxes have been devised. This paper extends
     these results and provides necessary and suffcient conditions for
     the existence of the lcs w.r.t.\ $\mathcal{EL}^+$-TBoxes. We show decidability
     of the existence in PTime and polynomial bounds on the maximal
     role-depth of the lcs, which in turn yields a computation algorithm
    
    for the lcs w.r.t.\ $\mathcal{EL}^+$-TBoxes.
  • Forschungsgruppe:Research Group: AutomatentheorieAutomata Theory
@inproceedings{ TuZa-DL13,
  address = {Ulm, Germany},
  author = {Anni-Yasmin {Turhan} and Benjamin {Zarrie{\ss}

,

 booktitle = {Proceedings of the 26th International Workshop on Description Logics ({DL-2013})},
 editor = {Thomas {Eiter} and Birte {Glimm} and Yevgeny {Kazakov} and Markus {Kr{\"o}tzsch} },
 month = {July},
 pages = {477--488},
 publisher = {CEUR-WS.org},
 series = {CEUR Workshop Proceedings},
 title = {Computing the lcs w.r.t.\ General $\mathcal{E\!L}^+$ {TB}oxes},
 year = {2013},

}

}}