Encoding Closure Operators into Neural Networks

Aus International Center for Computational Logic
Version vom 10. Oktober 2014, 21:48 Uhr von Markus Krötzsch (Diskussion | Beiträge) (1 Version: Publications of Sebastian Rudlph and Markus Kroetzsch, exported from AIFB)
(Unterschied) ← Nächstältere Version | Aktuelle Version (Unterschied) | Nächstjüngere Version → (Unterschied)
Wechseln zu:Navigation, Suche

Toggle side column

Encoding Closure Operators into Neural Networks

Sebastian RudolphSebastian Rudolph
Sebastian Rudolph
Encoding Closure Operators into Neural Networks
In A. S. d'Avila Garcez, P. Hitzler and G. Tamburrini, eds., Proceedings of the Third International Workshop on Neural-Symbolic Learning and Reasoning, volume 230 of CEUR Workshop Proceedings, January 2007
  • KurzfassungAbstract
    Motivated by basic ideas from formal concept analysis, we propose

    two ways to directly encode closure operators on finite sets in a

    3-layered feed forward neural network.
  • Projekt:Project: ReaSemNeOn
  • Forschungsgruppe:Research Group: Wissensmanagement„Wissensmanagement“ befindet sich nicht in der Liste (Computational Logic, Automatentheorie, Wissensverarbeitung, Knowledge-Based Systems, Knowledge Systems, Wissensbasierte Systeme, Logische Programmierung und Argumentation, Algebra und Diskrete Strukturen, Knowledge-aware Artificial Intelligence, Algebraische und logische Grundlagen der Informatik) zulässiger Werte für das Attribut „Forschungsgruppe“.Wissensmanagement
@inproceedings{R2007,
  author    = {Sebastian Rudolph},
  title     = {Encoding Closure Operators into Neural Networks},
  editor    = {A. S. {d'Avila} Garcez and P. Hitzler and G. Tamburrini},
  booktitle = {Proceedings of the Third International Workshop on
               Neural-Symbolic Learning and Reasoning},
  series    = {CEUR Workshop Proceedings},
  volume    = {230},
  year      = {2007},
  month     = {January}
}