Nested Sequents for Quantified Modal Logics

Aus International Center for Computational Logic
Version vom 16. Juli 2023, 16:25 Uhr von Tim Lyon (Diskussion | Beiträge) (Die Seite wurde neu angelegt: „{{Publikation Erster Autor |ErsterAutorVorname=Tim S. |ErsterAutorNachname=Lyon }} {{Inproceedings |Referiert=1 |Title=Nested Sequents for Quantified Modal Log…“)
(Unterschied) ← Nächstältere Version | Aktuelle Version (Unterschied) | Nächstjüngere Version → (Unterschied)
Wechseln zu:Navigation, Suche

Toggle side column

Nested Sequents for Quantified Modal Logics

Tim S. LyonTim S. Lyon
Tim S. Lyon
Nested Sequents for Quantified Modal Logics
In Revantha Ramanayake, Josef Urban, eds., Proceedings of Automated Reasoning with Analytic Tableaux and Related Methods (TABLEAUX), 2023
  • KurzfassungAbstract
    This paper studies nested sequents for quantified modal logics. In particular, it considers extensions of the propositional modal logics definable by the axioms D, T, B, 4, and 5 with varying, increasing, decreasing, and constant domains. Each calculus is proved to have good structural properties: weakening and contraction are height-preserving admissible and cut is (syntactically) admissible. Each calculus is shown to be equivalent to the corresponding axiomatic system and, thus, to be sound and complete. Finally, it is argued that the calculi are internal---i.e., each sequent has a formula interpretation---whenever the existence predicate is expressible in the language.
  • Projekt:Project: DeciGUT
  • Forschungsgruppe:Research Group: Computational LogicComputational Logic
@inproceedings{L2023,
  author    = {Tim S. Lyon},
  title     = {Nested Sequents for Quantified Modal Logics},
  editor    = {Revantha Ramanayake and Josef Urban},
  booktitle = {Proceedings of Automated Reasoning with Analytic Tableaux and
               Related Methods (TABLEAUX)},
  year      = {2023}
}