Effectiveness of Pre-computed Knowledge in Self-adaptation - A Robustness Study

Aus International Center for Computational Logic
Version vom 25. Februar 2025, 15:38 Uhr von Johannes Lehmann (Diskussion | Beiträge) (Die Seite wurde neu angelegt: „{{Publikation Erster Autor |ErsterAutorVorname= Max |ErsterAutorNachname=Korn |FurtherAuthors= Philipp Chrszon; Sascha Klüppelholz; Christel Baier; Sascha Wunderlich}} {{Inproceedings |Editor=Gilly, Katja and Thomas, Nigel |Title=Effectiveness of Pre-computed Knowledge in Self-adaptation - A Robustness Study |Booktitle=Computer Performance Engineering |Year=2023 |Publisher=Springer International Publishing |Pages=19--34 }}…“)
(Unterschied) ← Nächstältere Version | Aktuelle Version (Unterschied) | Nächstjüngere Version → (Unterschied)
Wechseln zu:Navigation, Suche

Toggle side column

Effectiveness of Pre-computed Knowledge in Self-adaptation - A Robustness Study

Max KornMax Korn,  Philipp ChrszonPhilipp Chrszon,  Sascha KlüppelholzSascha Klüppelholz,  Christel BaierChristel Baier,  Sascha WunderlichSascha Wunderlich
Max Korn, Philipp Chrszon, Sascha Klüppelholz, Christel Baier, Sascha Wunderlich
Effectiveness of Pre-computed Knowledge in Self-adaptation - A Robustness Study
In Gilly, Katja and Thomas, Nigel, eds., Computer Performance Engineering, 19--34, 2023. Springer International Publishing
  • KurzfassungAbstract
    Within classical MAPE-K control-loop structures for adaptive systems, knowledge gathered from monitoring the system and its environment is used to guide adaptation decisions at runtime. There are several approaches to enrich this knowledge base to improve the planning of adaptations. We consider a method where probabilistic model checking (PMC) is used at design time to compute results for various short-term objectives, such as the expected energy consumption, expected throughput, or probability of success. The variety PMC-results yield the basis for defining decision policies (PMC-based strategies) that operate at runtime and serve as heuristics to optimize for a given long-term objective. The main goal is to apply a robust decision making method that can deal with different kinds of uncertainty at runtime. In this paper, we thoroughly examine, quantify, and evaluate the potential of this approach with the help of an experimental study on an adaptive hardware platform, where the global objective addresses the trade-off between energy consumption and performance. The focus of this study is on the robustness of PMC-based strategies and their ability to dynamically manage situations, where the system at runtime operates under conditions that deviate from the (idealized) assumptions made in the preceding offline analysis.
  • Forschungsgruppe:Research Group: Verifikation und formale quantitative Analyse„Verifikation und formale quantitative Analyse“ befindet sich nicht in der Liste (Computational Logic, Automatentheorie, Wissensverarbeitung, Knowledge-Based Systems, Knowledge Systems, Wissensbasierte Systeme, Logische Programmierung und Argumentation, Algebra und Diskrete Strukturen, Knowledge-aware Artificial Intelligence, Algebraische und logische Grundlagen der Informatik) zulässiger Werte für das Attribut „Forschungsgruppe“.Algebraic and Logical Foundations of Computer Science
@inproceedings{KCKBW2023,
  author    = {Max Korn and Philipp Chrszon and Sascha Kl{\"{u}}ppelholz and
               Christel Baier and Sascha Wunderlich},
  title     = {Effectiveness of Pre-computed Knowledge in Self-adaptation - A
               Robustness Study},
  editor    = {Gilly and Katja\n               and Thomas and Nigel},
  booktitle = {Computer  Performance Engineering},
  publisher = {Springer International Publishing},
  year      = {2023},
  pages     = {19--34},
  doi       = {10.1007/978-3-031-25049-1_2}
}