Advanced Problem Solving and Search

Aus International Center for Computational Logic
Wechseln zu:Navigation, Suche

Advanced Problem Solving and Search

Lehrveranstaltung mit SWS 2/2/0 (Vorlesung/Übung/Praktikum) in WS 2024

Dozent

Umfang (SWS)

  • 2/2/0

Module

Leistungskontrolle

  • Klausur
  • Mündliche Prüfung



Problem solving and search is a central topic in Artificial Intelligence. This course presents several techniques to solve in general difficult problems.

The course covers the following topics:

  • Basic Concepts
  • Uninformed vs Informed Search
  • Local Search, Stochastic Hill Climbing, Simulated Annealing
  • Tabu Search
  • Evolutionary Algorithms, Genetic Algorithms
  • Answer Set Programming
  • Constraint Satisfaction Problems
  • Structural Decomposition Techniques (Tree/Hypertree Decompositions)

The course does not cover topics in the area of Machine Learning and Neural Networks.

NOTE: This course was previously named Problem Solving and Search in Artificial Intelligence. The contents of former PSSAI and APSS are identical, and therefore students can only take one of the two courses.

Learning Outcomes

  • The students should identify why typical AI problems are difficult to solve
  • The students will analyze different algorithms and methods for AI problems and identify when their application is appropriate
  • The connections between the (graph) structure and the complexity of a problem should become clear, as well as which methods can be used to tackle the problem
  • In the tutorials, the students will analyze different problems and develop solutions for them.

Prerequisites

  • Basic knowledge of theoretical computer science and Logic.
  • Good English skills: teaching will be exclusively in English.

Organisation

The goals can be acquired by studying the lecture material and solving the exercises of the tutorials.

The slides of the lectures and exercises of the tutorials will be uploaded in OPAL, for each corresponding session. We invite you to use the forum to ask questions and share your exercise solutions.

Please, register for the course on the OPAL site:

https://bildungsportal.sachsen.de/opal/auth/RepositoryEntry/46238597126

Exam

Key information: There are two forms of examination:

Students of the CMS master and exchange students:

  • There will be a written exam. Dates and information will follow during the semester. There is no possibility to take the exam remotely.
  • You must register in Selma or with your examination office.

Students with complex examinations:

  • Please, schedule your oral exams with Ramona Behling (ramona.behling@tu-dresden.de).
  • Stuart J. Russell and Peter Norvig. "Artificial Intelligence A Modern Approach" (3. edition ). Pearson Education, 2010.
  • Zbigniew Michalewicz and David B. Fogel. "How to Solve It: Modern Heuristics", volume 2. Springer, 2004.
  • Martin Gebser, Benjamin Kaufmann Roland Kaminski, and Torsten Schaub. "Answer Set Solving in Practice". Synthesis Lectures on Artificial Intelligence and Machine Learning. Morgan and Claypool Publishers, 2012.
  • Michael Gelfond and Vladimir Lifschitz. "Classical negation in logic programs and disjunctive databases". New Generation Comput., 9(3–4):365–386, 1991.
  • A.E. Eiben and J.E. Smith. "Introduction to Evolutionary Computing", Springer, 2003.
  • Thomas Hammerl, Nysret Musliu and Werner Schafhauser. "Metaheuristic Algorithms and Tree Decomposition", Handbook of Computational Intelligence, pp 1255–1270, Springer, 2015.
  • Hans L. Bodlaender, Arie M.C.A. Koster. "Treewidth computations I. Upper bounds", Comput. 208(2): 259–275, 2010.
  • Georg Gottlob, Nicola Leone, and Francesco Scarcello. "Hypertree decompositions and tractable queries", Journal of Computer and System Sciences, 64(3):579–627, 2002. ISSN 0022-0000.
  • Artan Dermaku, Tobias Ganzow, Georg Gottlob, Ben McMahan, Nysret Musliu, and Marko Samer. "Heuristic methods for hypertree decomposition", In Alexander Gelbukh and Eduardo F. Morales, editors, MICAI 2008: Advances in Artificial Intelligence, volume 5317 of LNCS, pages 1–11. Springer Berlin Heidelberg, 2008. ISBN 978-3-540-88635-8.

Veranstaltungskalender abonnieren (icalendar)

Vorlesung Introduction DS2, 15. Oktober 2024 in GÖR/0226/H
Vorlesung Informed vs. Uniformed Search DS2, 22. Oktober 2024 in GÖR/0226/H
Übung Tutorial Gr-Thu 1 (Traditional Search) DS4, 24. Oktober 2024 in APB E005
Übung Tutorial Gr-Mo 1 (Traditional Search) DS4, 28. Oktober 2024 in TOE/317/H
Vorlesung Local Search DS2, 29. Oktober 2024 in GÖR/0226/H
Übung Tutorial Gr-Thu 2 (Local Search) DS4, 14. November 2024 in APB E005
Übung Tutorial Gr-Mo 2 (Local Search) DS4, 18. November 2024 in TOE/317/H
Vorlesung Tabu Search DS2, 19. November 2024 in GÖR/0226/H
Übung Tutorial Gr-Thu 3 (Tabu Search) DS4, 21. November 2024 in APB E005
Übung Tutorial Gr-Mo 3 (Tabu Search) DS4, 25. November 2024 in TOE/317/H
Vorlesung Evolutionary Algorithms DS2, 26. November 2024 in GÖR/0226/H
Übung Tutorial Gr-Thu 4 (EA) DS4, 28. November 2024 in APB E005
Übung Tutorial Gr-Mo 4 (EA) DS4, 2. Dezember 2024 in TOE/317/H
Vorlesung ASP I DS2, 3. Dezember 2024 in GÖR/0226/H
Übung Tutorial Gr-Thu 5 (ASP I) DS4, 5. Dezember 2024 in APB E005
Übung Tutorial Gr-Mo 5 (ASP I) DS4, 9. Dezember 2024 in TOE/317/H
Vorlesung ASP II DS2, 10. Dezember 2024 in GÖR/0226/H
Übung Tutorial Gr-Thu 6 (ASP II) DS4, 12. Dezember 2024 in APB E005
Übung Tutorial Gr-Mo 6 (ASP II) DS4, 16. Dezember 2024 in TOE/317/H
Vorlesung ASP III DS2, 17. Dezember 2024 in GÖR/0226/H
Übung Tutorial Gr-Thu 7 (ASP III) DS4, 19. Dezember 2024 in APB E005
Übung Tutorial Gr-Mo 7 (ASP III) DS4, 6. Januar 2025 in TOE/317/H
Vorlesung CSP DS2, 7. Januar 2025 in GÖR/0226/H
Übung Tutorial Gr-Thu 8 (CSP) DS4, 9. Januar 2025 in APB E005
Übung Tutorial Gr-Mo 8 (CSP) DS4, 13. Januar 2025 in TOE/317/H
Vorlesung Structural Decompositions I DS2, 14. Januar 2025 in GÖR/0226/H
Übung Tutorial Gr-Thu 9 (TD I) DS4, 16. Januar 2025 in APB E005
Übung Tutorial Gr-Mo 9 (TD I) DS4, 20. Januar 2025 in TOE/317/H
Vorlesung Structural Decompositions II DS2, 21. Januar 2025 in GÖR/0226/H
Übung Tutorial Gr-Thu 10 (TD II) DS4, 23. Januar 2025 in APB E005
Übung Tutorial Gr-Mo 10 (TD II) DS4, 27. Januar 2025 in TOE/317/H
Vorlesung Q&A DS2, 28. Januar 2025 in GÖR/0226/H


Kalender