KARaML: Integrating Knowledge-Based and Machine Learning Approaches to Solve the Winograd Schema Challenge

From International Center for Computational Logic

Toggle side column

KARaML: Integrating Knowledge-Based and Machine Learning Approaches to Solve the Winograd Schema Challenge

Suk Joon HongSuk Joon Hong,  Brandon BennettBrandon Bennett,  Judith ClymoJudith Clymo,  Lucía Gómez ÁlvarezLucía Gómez Álvarez
Suk Joon Hong, Brandon Bennett, Judith Clymo, Lucía Gómez Álvarez
KARaML: Integrating Knowledge-Based and Machine Learning Approaches to Solve the Winograd Schema Challenge
In Andreas Martin, Knut Hinkelmann, Hans-Georg Fill, Aurona Gerber, Doug Lenat, Reinhard Stolle, Frank van Harmelen, eds., Proceedings of the AAAI 2022 Spring Symposium on Machine Learning and Knowledge Engineering for Hybrid Intelligence (AAAI-MAKE 2022), volume 3121, 2022. CEUR
@inproceedings{HBC{2022,
  author    = {Suk Joon Hong and Brandon Bennett and Judith Clymo and
               Luc{\'{\i}}a G{\'{o}}mez {\'{A}}lvarez},
  title     = {KARaML: Integrating Knowledge-Based and Machine Learning
               Approaches to Solve the Winograd Schema Challenge},
  editor    = {Andreas Martin and Knut Hinkelmann and Hans-Georg Fill and Aurona
               Gerber and Doug Lenat and Reinhard Stolle and Frank van Harmelen},
  booktitle = {Proceedings of the {AAAI} 2022 Spring Symposium on Machine
               Learning and Knowledge Engineering for Hybrid Intelligence
               (AAAI-MAKE 2022)},
  volume    = {3121},
  publisher = {CEUR},
  year      = {2022}
}