Russian Learner Corpus: Towards Error-Cause Annotation for L2 Russian

Aus International Center for Computational Logic
Wechseln zu:Navigation, Suche

Toggle side column

Russian Learner Corpus: Towards Error-Cause Annotation for L2 Russian

Daniil KosakinDaniil Kosakin,  Sergei ObiedkovSergei Obiedkov,  Ekaterina RakhilinaEkaterina Rakhilina,  Ivan SmirnovIvan Smirnov,  Anastasia VyrenkovaAnastasia Vyrenkova,  Ekaterina ZalivinaEkaterina Zalivina
Daniil Kosakin, Sergei Obiedkov, Ekaterina Rakhilina, Ivan Smirnov, Anastasia Vyrenkova, Ekaterina Zalivina
Russian Learner Corpus: Towards Error-Cause Annotation for L2 Russian
In Nicoletta Calzolari, Min-Yen Kan, Veronique Hoste, Alessandro Lenci, Sakriani Sakti, Nianwen Xue, eds., Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024), 14240-14258, May 2024. ELRA and ICCL
  • KurzfassungAbstract
    Russian Learner Corpus (RLC) is a large collection of learner texts in Russian written by native speakers of over forty languages. Learner errors in part of the corpus are manually corrected and annotated. Diverging from conventional error classifications, which typically focus on isolated lexical and grammatical features, the RLC error classification intends to highlight learners' strategies employed in the process of text production, such as derivational patterns and syntactic relations (including agreement and government). In this paper, we present two open datasets derived from RLC: a manually annotated full-text dataset and a dataset with crowdsourced corrections for individual sentences. In addition, we introduce an automatic error annotation tool that, given an original sentence and its correction, locates and labels errors according to a simplified version of the RLC error-type system. We evaluate the performance of the tool on manually annotated data from RLC.
  • Weitere Informationen unter:Further Information: Link
  • Projekt:Project: SECAIScaDS.AI
  • Forschungsgruppe:Research Group: Wissensbasierte SystemeKnowledge-Based Systems
@inproceedings{KORSVZ2024,
  author    = {Daniil Kosakin and Sergei Obiedkov and Ekaterina Rakhilina and
               Ivan Smirnov and Anastasia Vyrenkova and Ekaterina Zalivina},
  title     = {Russian Learner Corpus: Towards Error-Cause Annotation for L2
               Russian},
  editor    = {Nicoletta Calzolari and Min-Yen Kan and Veronique Hoste and
               Alessandro Lenci and Sakriani Sakti and Nianwen Xue},
  booktitle = {Proceedings of the 2024 Joint International Conference on
               Computational Linguistics, Language Resources and Evaluation
               (LREC-COLING 2024)},
  publisher = {ELRA and {ICCL}},
  year      = {2024},
  month     = {May},
  pages     = {14240-14258}
}