Knowledge Graphs

Aus International Center for Computational Logic
Wechseln zu:Navigation, Suche

Knowledge Graphs

Lehrveranstaltung mit SWS 2/2/0 (Vorlesung/Übung/Praktikum) in WS 2022

Dozent

Tutor

Umfang (SWS)

  • 2/2/0

Module

Leistungskontrolle

  • Klausur
  • Mündliche Prüfung

Matrix-Kanal

Vorlesungsreihe


Knowledge graphs are becoming an important paradigm in industry and research, with applications including prominent examples such as Google's own Knowledge Graph, Wikipedia's knowledge base sister Wikidata, and numerous artificial intelligence projects from Alexa to Siri. Meanwhile, companies are exploring the use of their own enterprise knowledge graphs for improving internal knowledge management.

With so many facets, knowledge graphs are a cross-cutting topic in computer science that involves aspects of data management (graph databases, file formats), publication (exchange formats, data integration), knowledge organisation (constraints, ontologies), and advanced analytics (expressive query languages, graph data mining). On each of these levels, there is some interesting theory and some interesting technology to be learned. This course will cover a colourful mix of technologies and methods related to the use of graphs for data analysis, knowledge representation, and data management.

Registration

The course generally does not require a special registration and there is no limit for participants. However, students in programmes that use the Selma system (esp. students in CMS Master) will need to register there to obtain credits. Additionally, we kindly ask you to enroll in the OPAL course so we can contact you, should the need arise. Most of the materials will be freely available world-wide. Live sessions (especially tutorials) are restricted to students of TU Dresden.

Schedule and Location

We are currently planning with in-presence teaching, although this might still change.

All dates are published on this page (see Dates & Materials above)

Veranstaltungskalender abonnieren (icalendar)

Vorlesung 1. Introduction and Welcome DS3, 11. Oktober 2022 in APB E005
Vorlesung 2. The Resource Description Framework RDF DS3, 18. Oktober 2022 in APB E005
Übung 0. Introduction to Python DS5, 18. Oktober 2022 in APB E005
Vorlesung 3. Modelling in RDF / SPARQL Basics DS3, 25. Oktober 2022 in APB E005
Übung 1. Getting to Know Graphs and the Resource Description Framework DS5, 25. Oktober 2022 in APB E005
Vorlesung 4. Wikidata DS3, 1. November 2022 in APB E005
Übung 2. RDF Modelling DS5, 1. November 2022 in APB E005
Vorlesung 5. Advanced Features of SPARQL DS3, 8. November 2022 in APB E005
Übung 3. SPARQL and Wikidata DS5, 8. November 2022 in APB E005
Vorlesung 6. SPARQL Semantics DS3, 15. November 2022 in APB E005
Übung 4. More SPARQL and Wikidata DS5, 15. November 2022 in APB E005
Vorlesung 7. Expressive Power and Complexity of SPARQL DS3, 22. November 2022 in APB E005
Übung 5. Advanced SPARQL DS5, 22. November 2022 in APB E005
Vorlesung 8. Limits of SPARQL / Datalog DS3, 29. November 2022 in APB E005
Übung 6. More Advanced SPARQL DS5, 29. November 2022 in APB E005
Vorlesung 9. Rules for Querying Graphs DS3, 6. Dezember 2022 in APB E005
Übung 7. Expressivity of SPARQL DS5, 6. Dezember 2022 in APB E005
Vorlesung 10. Property Graph DS3, 13. Dezember 2022 in APB E005
Übung 8. Datalog & Rulewerk DS5, 13. Dezember 2022 in APB E005
Vorlesung 11. Querying Property Graphs with Cypher DS3, 20. Dezember 2022 in APB E005
Übung 9. Datalog, Rulewerk, and Property Graph DS5, 20. Dezember 2022 in APB E005
Vorlesung 12. Knowledge Graph Quality DS3, 10. Januar 2023 in APB E005
Übung 10. Cypher DS5, 10. Januar 2023 in APB E005
Vorlesung 13. Centrality DS3, 17. Januar 2023 in APB E005
Übung 11. Knowledge Graph Quality and Validation DS5, 17. Januar 2023 in APB E005
Übung 12. Centrality Measures DS5, 24. Januar 2023 in APB E005


Kalender