Advanced Problem Solving and Search (SS2023): Unterschied zwischen den Versionen

Aus International Center for Computational Logic
Wechseln zu:Navigation, Suche
Keine Bearbeitungszusammenfassung
Sarah Gaggl (Diskussion | Beiträge)
Keine Bearbeitungszusammenfassung
Zeile 54: Zeile 54:
|Lehrveranstaltungstype=Vorlesung
|Lehrveranstaltungstype=Vorlesung
|Title=Introduction
|Title=Introduction
|Room=virtual
|Room=HSZ/0401/H
|Date=2023/04/17
|Date=2023/04/17
|DS=DS2
|DS=DS2
Zeile 61: Zeile 61:
|Lehrveranstaltungstype=Vorlesung
|Lehrveranstaltungstype=Vorlesung
|Title=ASP 1
|Title=ASP 1
|Room=virtual
|Room=HSZ/0401/H
|Date=2023/04/24
|Date=2023/04/24
|DS=DS2
|DS=DS2
Zeile 68: Zeile 68:
|Lehrveranstaltungstype=Vorlesung
|Lehrveranstaltungstype=Vorlesung
|Title=ASP 2
|Title=ASP 2
|Room=virtual
|Room=HSZ/0401/H
|Date=2023/05/08
|Date=2023/05/08
|DS=DS2
|DS=DS2
Zeile 82: Zeile 82:
|Lehrveranstaltungstype=Übung
|Lehrveranstaltungstype=Übung
|Title=Tutorial 1 (ASP)
|Title=Tutorial 1 (ASP)
|Room=APB E005
|Room=APB E009
|Date=2023/05/12
|Date=2023/05/12
|DS=DS1
|DS=DS1
Zeile 89: Zeile 89:
|Lehrveranstaltungstype=Vorlesung
|Lehrveranstaltungstype=Vorlesung
|Title=ASP 3
|Title=ASP 3
|Room=virtual
|Room=HSZ/0401/H
|Date=2023/05/15
|Date=2023/05/15
|DS=DS2
|DS=DS2
Zeile 103: Zeile 103:
|Lehrveranstaltungstype=Übung
|Lehrveranstaltungstype=Übung
|Title=Tutorial 2 (ASP)
|Title=Tutorial 2 (ASP)
|Room=APB E005
|Room=APB E009
|Date=2023/05/19
|Date=2023/05/19
|DS=DS1
|DS=DS1
Zeile 110: Zeile 110:
|Lehrveranstaltungstype=Vorlesung
|Lehrveranstaltungstype=Vorlesung
|Title=Informed vs. Uninformed Search
|Title=Informed vs. Uninformed Search
|Room=virtual
|Room=HSZ/0401/H
|Date=2023/05/22
|Date=2023/05/22
|DS=DS2
|DS=DS2
Zeile 117: Zeile 117:
|Lehrveranstaltungstype=Vorlesung
|Lehrveranstaltungstype=Vorlesung
|Title=Local Search
|Title=Local Search
|Room=virtual
|Room=HSZ/0401/H
|Date=2023/06/05
|Date=2023/06/05
|DS=DS2
|DS=DS2
Zeile 131: Zeile 131:
|Lehrveranstaltungstype=Übung
|Lehrveranstaltungstype=Übung
|Title=Tutorial 3 (Local Search)
|Title=Tutorial 3 (Local Search)
|Room=APB E005
|Room=APB E009
|Date=2023/06/09
|Date=2023/06/09
|DS=DS1
|DS=DS1
Zeile 138: Zeile 138:
|Lehrveranstaltungstype=Vorlesung
|Lehrveranstaltungstype=Vorlesung
|Title=Tabu Search
|Title=Tabu Search
|Room=virtual
|Room=HSZ/0401/H
|Date=2023/06/12
|Date=2023/06/12
|DS=DS2
|DS=DS2
Zeile 152: Zeile 152:
|Lehrveranstaltungstype=Übung
|Lehrveranstaltungstype=Übung
|Title=Tutorial 4 (Tabu Search)
|Title=Tutorial 4 (Tabu Search)
|Room=APB E005
|Room=APB E009
|Date=2023/06/16
|Date=2023/06/16
|DS=DS1
|DS=DS1
Zeile 159: Zeile 159:
|Lehrveranstaltungstype=Vorlesung
|Lehrveranstaltungstype=Vorlesung
|Title=Evolutionary Algorithms
|Title=Evolutionary Algorithms
|Room=virtual
|Room=HSZ/0401/H
|Date=2023/06/19
|Date=2023/06/19
|DS=DS2
|DS=DS2
Zeile 166: Zeile 166:
|Lehrveranstaltungstype=Übung
|Lehrveranstaltungstype=Übung
|Title=Tutorial 5 (EA)
|Title=Tutorial 5 (EA)
|Room=APB E005
|Room=APB E009
|Date=2023/06/23
|Date=2023/06/23
|DS=DS1
|DS=DS1
Zeile 180: Zeile 180:
|Lehrveranstaltungstype=Vorlesung
|Lehrveranstaltungstype=Vorlesung
|Title=CSP
|Title=CSP
|Room=virtual
|Room=HSZ/0401/H
|Date=2023/06/26
|Date=2023/06/26
|DS=DS2
|DS=DS2
Zeile 194: Zeile 194:
|Lehrveranstaltungstype=Übung
|Lehrveranstaltungstype=Übung
|Title=Tutorial 6 (CSP)
|Title=Tutorial 6 (CSP)
|Room=APB E005
|Room=APB E009
|Date=2023/06/30
|Date=2023/06/30
|DS=DS1
|DS=DS1
Zeile 201: Zeile 201:
|Lehrveranstaltungstype=Vorlesung
|Lehrveranstaltungstype=Vorlesung
|Title=Structural Decompositions 1
|Title=Structural Decompositions 1
|Room=virtual
|Room=HSZ/0401/H
|Date=2023/07/03
|Date=2023/07/03
|DS=DS2
|DS=DS2
Zeile 215: Zeile 215:
|Lehrveranstaltungstype=Übung
|Lehrveranstaltungstype=Übung
|Title=Tutorial 7 (Structural Decompositions)
|Title=Tutorial 7 (Structural Decompositions)
|Room=APB E005
|Room=APB E009
|Date=2023/07/07
|Date=2023/07/07
|DS=DS1
|DS=DS1
Zeile 222: Zeile 222:
|Lehrveranstaltungstype=Vorlesung
|Lehrveranstaltungstype=Vorlesung
|Title=Structural Decompositions 2
|Title=Structural Decompositions 2
|Room=virtual
|Room=HSZ/0401/H
|Date=2023/07/10
|Date=2023/07/10
|DS=DS2
|DS=DS2
Zeile 229: Zeile 229:
|Lehrveranstaltungstype=Vorlesung
|Lehrveranstaltungstype=Vorlesung
|Title=Q&A
|Title=Q&A
|Room=virtual
|Room=HSZ/0401/H
|Date=2023/07/17
|Date=2023/07/17
|DS=DS2
|DS=DS2
}}
}}

Version vom 12. April 2023, 14:53 Uhr

Advanced Problem Solving and Search

Lehrveranstaltung mit SWS 2/2/0 (Vorlesung/Übung/Praktikum) in SS 2023

Dozent

Tutor

Umfang (SWS)

  • 2/2/0

Module

Leistungskontrolle

  • Klausur
  • Mündliche Prüfung


Problem solving and search is a central topic in Artificial Intelligence. This course presents several techniques to solve in general difficult problems.

The course covers the following topics:

  • Basic Concepts
  • Uninformed vs Informed Search
  • Local Search, Stochastic Hill Climbing, Simulated Annealing
  • Tabu Search
  • Constraint Satisfaction Problems
  • Evolutionary Algorithms, Genetic Algorithms
  • Answer Set Programming
  • Structural Decomposition Techniques (Tree/Hypertree Decompositions)

The course does not cover topics in the area of Machine Learning and Neural Networks.

NOTE: This course was previously named Problem Solving and Search in Artificial Intelligence. The contents of former PSSAI and APSS are identical, and therefore students can only take one of the two courses.

Learning Outcomes

  • The students should identify why typical AI problems are difficult to solve
  • The students will analyze different algorithms and methods for AI problems and identify when their application is appropriate
  • The connections between the (graph) structure and the complexity of a problem should become clear, as well as which methods can be used to tackle the problem
  • In the tutorials, the students will analyze different problems and develop solutions for them.

Prerequisites

  • Basic knowledge of theoretical computer science and Logic.
  • Good English skills: both the teaching and examination will be exclusively in English.

Organisation

The goals can be acquired by studying the lecture material and solving the exercises of the tutorials.

The slides of the lectures and exercises of the tutorials will be uploaded in OPAL, for each corresponding session. We invite you to use the forum to ask questions and share your exercise solutions.
  • Stuart J. Russell and Peter Norvig. "Artificial Intelligence A Modern Approach" (3. edition ). Pearson Education, 2010.
  • Zbigniew Michalewicz and David B. Fogel. "How to Solve It: Modern Heuristics", volume 2. Springer, 2004.
  • Martin Gebser, Benjamin Kaufmann Roland Kaminski, and Torsten Schaub. "Answer Set Solving in Practice". Synthesis Lectures on Artificial Intelligence and Machine Learning. Morgan and Claypool Publishers, 2012.
  • Michael Gelfond and Vladimir Lifschitz. "Classical negation in logic programs and disjunctive databases". New Generation Comput., 9(3–4):365–386, 1991.
  • A.E. Eiben and J.E. Smith. "Introduction to Evolutionary Computing", Springer, 2003.
  • Thomas Hammerl, Nysret Musliu and Werner Schafhauser. "Metaheuristic Algorithms and Tree Decomposition", Handbook of Computational Intelligence, pp 1255–1270, Springer, 2015.
  • Hans L. Bodlaender, Arie M.C.A. Koster. "Treewidth computations I. Upper bounds", Comput. 208(2): 259–275, 2010.
  • Georg Gottlob, Nicola Leone, and Francesco Scarcello. "Hypertree decompositions and tractable queries", Journal of Computer and System Sciences, 64(3):579–627, 2002. ISSN 0022-0000.
  • Artan Dermaku, Tobias Ganzow, Georg Gottlob, Ben McMahan, Nysret Musliu, and Marko Samer. "Heuristic methods for hypertree decomposition", In Alexander Gelbukh and Eduardo F. Morales, editors, MICAI 2008: Advances in Artificial Intelligence, volume 5317 of LNCS, pages 1–11. Springer Berlin Heidelberg, 2008. ISBN 978-3-540-88635-8.

Veranstaltungskalender abonnieren (icalendar)

Vorlesung Introduction DS2, 17. April 2023 in HSZ/0401
Vorlesung ASP 1 DS2, 24. April 2023 in HSZ/0401
Übung Tutorial 1 (ASP) DS1, 28. April 2023 in APB E009
Übung Tutorial 1 (ASP) DS1, 8. Mai 2023 in APB E005
Vorlesung ASP 2 DS2, 8. Mai 2023 in HSZ/0401
Übung Tutorial 2 (ASP) DS1, 12. Mai 2023 in APB E009
Übung Tutorial 2 (ASP) DS1, 15. Mai 2023 in APB E005
Vorlesung ASP 3 DS2, 15. Mai 2023 in HSZ/0401
Vorlesung Informed vs. Uninformed Search DS2, 22. Mai 2023 in HSZ/0401
Vorlesung Local Search DS2, 5. Juni 2023 in HSZ/0401
Übung Tutorial 3 (Local Search) DS1, 9. Juni 2023 in APB E009
Übung Tutorial 3 (Local Search) DS1, 12. Juni 2023 in APB E005
Vorlesung Tabu Search DS2, 12. Juni 2023 in HSZ/0401
Übung Tutorial 4 (Tabu Search) DS1, 16. Juni 2023 in APB E009
Übung Tutorial 4 (Tabu Search) DS1, 19. Juni 2023 in APB E005
Vorlesung Evolutionary Algorithms DS2, 19. Juni 2023 in HSZ/0401
Übung Tutorial 5 (EA) DS1, 23. Juni 2023 in APB E009
Übung Tutorial 5 (EA) DS1, 26. Juni 2023 in APB E005
Vorlesung CSP DS2, 26. Juni 2023 in HSZ/0401
Übung Tutorial 6 (CSP) DS1, 30. Juni 2023 in APB E009
Übung Tutorial 6 (CSP) DS1, 3. Juli 2023 in APB E005
Vorlesung Structural Decompositions 1 DS2, 3. Juli 2023 in HSZ/0401
Übung Tutorial 7 (Structural Decompositions) DS1, 7. Juli 2023 in APB E009
Übung Tutorial 7 (Structural Decompositions) DS1, 10. Juli 2023 in APB E005
Vorlesung Structural Decompositions 2 DS2, 10. Juli 2023 in HSZ/0401
Vorlesung Q&A DS2, 17. Juli 2023 in HSZ/0401


Kalender