Exact Learning of Multivalued Dependency Formulas

Aus International Center for Computational Logic
Version vom 23. Februar 2017, 20:46 Uhr von Ana Ozaki (Diskussion | Beiträge) (Die Seite wurde neu angelegt: „{{Publikation Erster Autor |ErsterAutorVorname=Montserrat |ErsterAutorNachname=Hermo |FurtherAuthors=Ana Ozaki }} {{Article |Referiert=0 |Title=Exact Learning…“)
(Unterschied) ← Nächstältere Version | Aktuelle Version (Unterschied) | Nächstjüngere Version → (Unterschied)
Wechseln zu:Navigation, Suche

Toggle side column

Exact Learning of Multivalued Dependency Formulas

Montserrat HermoMontserrat Hermo,  Ana OzakiAna Ozaki
Exact Learning of Multivalued Dependency Formulas


Montserrat Hermo, Ana Ozaki
Exact Learning of Multivalued Dependency Formulas
Special Issue of ALT 2015 in the journal Theoretical Computer Science, to appear
  • KurzfassungAbstract
    The transformation of a relational database schema into fourth normal form, which minimizes data redundancy, relies on the correct identification of multivalued dependencies. In this work, we study the learnability of multivalued dependency formulas (MVDF), which correspond to the logical theory behind multivalued dependencies. As we explain, MVDF lies between propositional Horn and 2-Quasi-Horn. We prove that MVDF is polynomially learnable in Angluin et al.’s exact learning model with membership and equivalence queries, provided that counterexamples and membership queries are formulated as 2-Quasi-Horn clauses. As a consequence, we obtain that the subclass of 2-Quasi-Horn theories which are equivalent to MVDF is polynomially learnable.
  • Forschungsgruppe:Research Group: Wissensbasierte SystemeKnowledge-Based Systems
@article{HO2017,
  author  = {Montserrat Hermo and Ana Ozaki},
  title   = {Exact Learning of Multivalued Dependency Formulas},
  journal = {Special Issue of {ALT} 2015 in the journal Theoretical Computer
             Science},
  year    = {2017}
}