Category Theory in Ontology Research: Concrete Gain from an Abstract Approach

Aus International Center for Computational Logic
Version vom 13. Oktober 2014, 10:12 Uhr von Markus Krötzsch (Diskussion | Beiträge) (Textersetzung - „|Forschungsgruppe=Wissensmanagement“ durch „|Forschungsgruppe=Information Systems“)
(Unterschied) ← Nächstältere Version | Aktuelle Version (Unterschied) | Nächstjüngere Version → (Unterschied)
Wechseln zu:Navigation, Suche
Toggle side column

Category Theory in Ontology Research: Concrete Gain from an Abstract Approach

Markus KrötzschMarkus Krötzsch,  Marc EhrigMarc Ehrig,  York SureYork Sure,  Pascal HitzlerPascal Hitzler
Markus Krötzsch, Marc Ehrig, York Sure, Pascal Hitzler
Category Theory in Ontology Research: Concrete Gain from an Abstract Approach
Technical Report, AIFB, Universität Karlsruhe, volume 893, March 2005
  • KurzfassungAbstract
    The focus of research on representing and reasoning with knowledge traditionally has been on single specifications and appropriate inference paradigms to draw conclusions from such data. Accordingly, this is also an essential aspect of ontology research which has received much attention in recent years. But ontologies introduce another new challenge based on the distributed nature of most of their applications, which requires to relate heterogeneous ontological specifications and to integrate information from multiple sources. These problems have of course been recognized, but many current approaches still lack the deep formal backgrounds on which todays reasoning paradigms are already founded. Here we propose category theory as a well-explored and very extensive mathematical foundation for modelling distributed knowledge. A particular prospect is to derive conclusions from the structure of those distributed knowledge bases, as it is for example needed when merging ontologies.
  • Projekt:Project: SEKTKnowledgeWebSmartWeb
  • Forschungsgruppe:Research Group: Information Systems„Information Systems“ befindet sich nicht in der Liste (Computational Logic, Automatentheorie, Wissensverarbeitung, Knowledge-Based Systems, Knowledge Systems, Wissensbasierte Systeme, Logische Programmierung und Argumentation, Algebra und Diskrete Strukturen, Knowledge-aware Artificial Intelligence, Algebraische und logische Grundlagen der Informatik) zulässiger Werte für das Attribut „Forschungsgruppe“.Knowledge-Based Systems
@techreport{KESH2005,
  author      = {Markus Kr{\"{o}}tzsch and Marc Ehrig and York Sure and Pascal
                 Hitzler},
  title       = {Category Theory in Ontology Research: Concrete Gain from an
                 Abstract Approach},
  institution = {AIFB, Universit{\"{a}}t Karlsruhe},
  year        = {2005},
  month       = {March}
}