The Precise Complexity of Reasoning in $\mathcal{ALC}$ with $ω$-Admissible Concrete Domains

Aus International Center for Computational Logic
Version vom 7. August 2024, 15:17 Uhr von Filippo De Bortoli (Diskussion | Beiträge) (Die Seite wurde neu angelegt: „{{Publikation Erster Autor |ErsterAutorVorname=Stefan |ErsterAutorNachname=Borgwardt |FurtherAuthors=Filippo De Bortoli; Patrick Koopmann }} {{Inproceedings |Referiert=1 |Title=The Precise Complexity of Reasoning in $\mathcal{ALC}$ with $ω$-Admissible Concrete Domains |To appear=0 |Year=2024 |Month=Juni |Booktitle=Proceedings of the 37th International Workshop on Description Logics (DL'24) |Editor=Laura Giordano, Jean Christoph Jung, Ana Ozaki |Series=CE…“)
(Unterschied) ← Nächstältere Version | Aktuelle Version (Unterschied) | Nächstjüngere Version → (Unterschied)
Wechseln zu:Navigation, Suche

Toggle side column

The Precise Complexity of Reasoning in $\mathcal{ALC}$ with $ω$-Admissible Concrete Domains

Stefan BorgwardtStefan Borgwardt,  Filippo De BortoliFilippo De Bortoli,  Patrick KoopmannPatrick Koopmann
The Precise Complexity of Reasoning in $\mathcal{ALC}$ with $ω$-Admissible Concrete Domains


  • ISSN: 1613-0073
Stefan Borgwardt, Filippo De Bortoli, Patrick Koopmann
The Precise Complexity of Reasoning in $\mathcal{ALC}$ with $ω$-Admissible Concrete Domains
In Laura Giordano, Jean Christoph Jung, Ana Ozaki, eds., Proceedings of the 37th International Workshop on Description Logics (DL'24), volume 3739 of CEUR Workshop Proceedings, June 2024
  • KurzfassungAbstract
    Concrete domains have been introduced in the context of Description Logics to allow references to qualitative and quantitative values. In particular, the class of $\omega$-admissible concrete domains, which includes Allen's interval algebra, the region connection calculus (RCC8), and the rational numbers with ordering and equality, has been shown to yield extensions of $\mathcal{ALC}$ for which concept satisfiability w.r.t. a general TBox is decidable. In this paper, we present an algorithm based on type elimination and use it to show that deciding the consistency of an $\mathcal{ALC}(\mathfrak{D})$ ontology is ExpTime-complete if the concrete domain $\mathfrak{D}$ is $\omega$-admissible and its constraint satisfaction problem is decidable in exponential time. While this allows us to reason with concept and role assertions, we also investigate feature assertions $f(a,c)$ that can specify a constant $c$ as the value of a feature $f$ for an individual $a$. We show that, under conditions satisfied by all known $\omega$-admissible domains, we can add feature assertions without affecting the complexity.
  • Bemerkung: Note: An extended version of this paper can be found at: https://arxiv.org/abs/2405.19096
  • Weitere Informationen unter:Further Information: Link
  • Projekt:Project: ScaDS.AI
  • Forschungsgruppe:Research Group: AutomatentheorieAutomata Theory
@inproceedings{ BaBoKo-DL-24,
      address = {Bergen, Norway},
      author = {Stefan {Borgwardt} and Filippo {De Bortoli} and Patrick {Koopmann}},
      booktitle = {Proceedings of the 37th International Workshop on Description Logics (DL'24) },
      editor = {Laura {Giordano} and Jean Christoph {Jung} and Ana {Ozaki}},
      publisher = {CEUR-WS},
      series = {{CEUR} Workshop Proceedings},
      title = {{The Precise Complexity of Reasoning in $\mathcal{ALC}$ with $\omega$-Admissible Concrete Domains}},
      volume = {3739},
      year = {2024},
    }