Irina Dragoste

From International Center for Computational Logic

M.Sc. Irina Dragoste

Research AssociateTechnische Universität DresdenInternational Center for Computational Logic Knowledge-Based Systems

Newest Publications

View full publication list

David Carral, Irina Dragoste, Markus Krötzsch
The Combined Approach to Query Answering in Horn-ALCHOIQ
Technical Report, TU Dresden, 2018
Details Download

Jacopo Urbani, Markus Krötzsch, Ceriel Jacobs, Irina Dragoste, David Carral
Efficient Model Construction for Horn Logic with VLog
In Didier Galmiche, Stephan Schulz, Roberto Sebastiani, eds., Proceedings of the 8th International Joint Conference on Automated Reasoning (IJCAR 2018), volume 10900 of LNCS, 680--688, 2018. Springer
Details Download

David Carral, Irina Dragoste, Markus Krötzsch
Tractable Query Answering for Expressive Ontologies and Existential Rules
In Claudia d'Amato, Miriam Fernández, Valentina A. M. Tamma, Freddy Lécué, Philippe Cudré-Mauroux, Juan F. Sequeda, Christoph Lange, Jeff Heflin, eds., Proceedings of the 16th International Semantic Web Conference (ISWC'17), volume 10587 of LNCS, 2017. Springer
Details Download

David Carral, Irina Dragoste, Markus Krötzsch
Restricted chase (non)termination for existential rules with disjunctions
In Carles Sierra, eds., Proceedings of the 26th International Joint Conference on Artificial Intelligence (IJCAI'17), 922-928, 2017. International Joint Conferences on Artificial Intelligence
Details Download

Adrian Groza, Irina Dragoste, Iulia Sincai, Ioana Jimborean, Vasile Moraru
An Ontology Selection and Ranking System Based on the Analytic Hierarchy Process.
In Franz Winkler, Viorel Negru, Tetsuo Ida, Tudor Jebelean, Dana Petcu, Stephen M. Watt, Daniela Zaharie, eds., 16th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing, SYNASC 2014, Timisoara, Romania, September 22-25, 2014, 293--300, September 2014. IEEE Computer Society
Details

View full publication list
Cfaed.jpg

cfaed
CENTER FOR ADVANCING ELECTRONICS DRESDEN

VLog
A fast, highly scalable rule engine for existential rules and Datalog.