Problem Solving and Search in Artificial Intelligence

Aus International Center for Computational Logic
Wechseln zu:Navigation, Suche

Problem Solving and Search in Artificial Intelligence

Lehrveranstaltung mit SWS 2/2/0 (Vorlesung/Übung/Praktikum) in SS 2019

Dozent

Tutor

Umfang (SWS)

  • 2/2/0

Module

Leistungskontrolle

  • Mündliche Prüfung



Problem solving and search is a central topic in Artificial Intelligence. This course presents several techniques to solve in general difficult problems.

The course covers the following topics:

  • Basic Concepts
  • Uninformed vs Informed Search
  • Local Search, Stochastic Hill Climbing, Simulated Annealing
  • Tabu Search
  • Answer Set Programming
  • Constraint Satisfaction
  • Evolutionary Algorithms, Genetic Algorithms
  • Structural Decomposition Techniques (Tree/Hypertree Decompositions)


Learning Outcomes

  • The students should identify why typical AI problems are difficult to solve
  • The students will analyze different algorithms and methods for AI problems and identify when their application is appropriate
  • The connections between the (graph) structure and the complexity of a problem should become clear, as well as which methods can be used to tackle the problem
  • In the practical part, the students will analyze a given problem and develop a solution for it.

Prerequisites

Basic knowledge of theoretical computer science and Logic.

Organisation

The goals can be acquierd by studying the lecture material, solving the exercises of the tutorials and developing an implementation for a practical problem.

The practical work should be performed in groups of two students throughout the semester with regular updates on the progress.
  • Stuart J. Russell and Peter Norvig. "Artificial Intelligence A Modern Approach" (3. edition ). Pearson Education, 2010.
  • Zbigniew Michalewicz and David B. Fogel. "How to Solve It: Modern Heuristics", volume 2. Springer, 2004.
  • Martin Gebser, Benjamin Kaufmann Roland Kaminski, and Torsten Schaub. "Answer Set Solving in Practice". Synthesis Lectures on Artificial Intelligence and Machine Learning. Morgan and Claypool Publishers, 2012.
  • Michael Gelfond and Vladimir Lifschitz. "Classical negation in logic programs and disjunctive databases". New Generation Comput., 9(3–4):365–386, 1991.
  • A.E. Eiben and J.E. Smith. "Introduction to Evolutionary Computing", Springer, 2003.
  • Thomas Hammerl, Nysret Musliu and Werner Schafhauser. "Metaheuristic Algorithms and Tree Decomposition", Handbook of Computational Intelligence, pp 1255–1270, Springer, 2015.
  • Hans L. Bodlaender, Arie M.C.A. Koster. "Treewidth computations I. Upper bounds", Comput. 208(2): 259–275, 2010.
  • Georg Gottlob, Nicola Leone, and Francesco Scarcello. "Hypertree decompositions and tractable queries", Journal of Computer and System Sciences, 64(3):579–627, 2002. ISSN 0022-0000.
  • Artan Dermaku, Tobias Ganzow, Georg Gottlob, Ben McMahan, Nysret Musliu, and Marko Samer. "Heuristic methods for hypertree decomposition", In Alexander Gelbukh and Eduardo F. Morales, editors, MICAI 2008: Advances in Artificial Intelligence, volume 5317 of LNCS, pages 1–11. Springer Berlin Heidelberg, 2008. ISBN 978-3-540-88635-8.

Veranstaltungskalender abonnieren (icalendar)

Vorlesung Introduction DS3, 8. April 2019 in APB E005 Datei
Praktikum Practical Work DS2, 15. April 2019 in APB E005 Datei
Vorlesung CSP DS3, 15. April 2019 in APB E005 Datei
Vorlesung Uninformed vs. Informed Search DS2, 29. April 2019 in APB 1004 Datei
Vorlesung Local Search, Hill Climbing, Simulated Annealing DS3, 29. April 2019 in APB 1004 Datei
Übung Tutorial 1 (CSP) DS2, 6. Mai 2019 in HSZ/003/H Datei
Vorlesung Tabu Search DS3, 6. Mai 2019 in HSZ/003/H Datei
Übung Tutorial 2 (Search) DS2, 13. Mai 2019 in MER/02/H Datei
Vorlesung ASP 1 DS3, 13. Mai 2019 in MER/02/H Datei
Übung Tutorial 3 (ASP 1) DS2, 20. Mai 2019 in MER/02/H Datei
Vorlesung ASP 2 DS3, 20. Mai 2019 in MER/02/H Datei
Praktikum Practical Work DS2, 27. Mai 2019 in MER/02/H
Vorlesung ASP 3 DS3, 27. Mai 2019 in MER/02/H
Übung Tutorial 4 (ASP 2) DS2, 3. Juni 2019 in MER/02/H
Vorlesung Evolutionary Algorithms DS3, 3. Juni 2019 in MER/02/H Datei
Übung Tutorial 5 (Evolutionary Algorithms) DS2, 17. Juni 2019 in MER/02/H
Vorlesung Structural Decompositions 1 DS3, 17. Juni 2019 in MER/02/H Datei
Übung Tutorial 6 (Structural Decompositions) DS2, 24. Juni 2019 in MER/02/H Datei
Vorlesung Structural Decompositions 2 DS3, 24. Juni 2019 in MER/02/H Datei
Vorlesung Summary, Q&A, Practical Work DS3, 1. Juli 2019 in MER/02/H
Praktikum Practical Work DS2, 8. Juli 2019 in MER/02/H
Praktikum Practical Work DS3, 8. Juli 2019 in MER/02/H


Kalender