Inproceedings3056: Unterschied zwischen den Versionen

Aus International Center for Computational Logic
Wechseln zu:Navigation, Suche
K (Textersetzung - „|Referiert=True“ durch „|Referiert=1“)
 
Markus Krötzsch (Diskussion | Beiträge)
K (Textersetzung - „{{Forschungsgebiet Auswahl}}“ durch „“)
 
(6 dazwischenliegende Versionen von 3 Benutzern werden nicht angezeigt)
Zeile 2: Zeile 2:
|ErsterAutorNachname=Wojtinnek
|ErsterAutorNachname=Wojtinnek
|ErsterAutorVorname=Pia-Ramona
|ErsterAutorVorname=Pia-Ramona
}}
|FurtherAuthors=Brian Harrington
{{Publikation Author
; Sebastian Rudolph
|Rank=2
; Stephen Pulman
|Author=Brian Harrington
}}
{{Publikation Author
|Rank=3
|Author=Sebastian Rudolph
}}
{{Publikation Author
|Rank=4
|Author=Stephen Pulman
}}
}}
{{Inproceedings
{{Inproceedings
|Referiert=1
|Referiert=1
|Title=Conceptual Knowledge Acquisition Using Automatically Generated Large-Scale Semantic Networks
|Title=Conceptual Knowledge Acquisition Using Automatically Generated Large-Scale Semantic Networks
|To appear=0
|Year=2010
|Year=2010
|Month=Juli
|Month=Juli
Zeile 29: Zeile 21:
{{Publikation Details
{{Publikation Details
|Abstract=We present a method for automatically creating large-scale semantic networks from natural language text, based on deep semantic analysis. We provide a robust and scalable implementation, and sketch various ways in which the representation may be deployed for conceptual knowledge acquisition. A translation to RDF establishes interoperability with a wide range of standardised tools, and bridges the gap to the field of semantic technologies.
|Abstract=We present a method for automatically creating large-scale semantic networks from natural language text, based on deep semantic analysis. We provide a robust and scalable implementation, and sketch various ways in which the representation may be deployed for conceptual knowledge acquisition. A translation to RDF establishes interoperability with a wide range of standardised tools, and bridges the gap to the field of semantic technologies.
|Download=WHRP-ICCS2010.pdf,
|Download=WHRP-ICCS2010.pdf
|Projekt=Multipla
|Forschungsgruppe=Computational Logic
|Forschungsgruppe=Wissensmanagement
}}
{{Forschungsgebiet Auswahl
|Forschungsgebiet=Natürliche Sprachverarbeitung
}}
{{Forschungsgebiet Auswahl
|Forschungsgebiet=Text Mining
}}
}}

Aktuelle Version vom 28. Oktober 2014, 20:18 Uhr

Toggle side column

Conceptual Knowledge Acquisition Using Automatically Generated Large-Scale Semantic Networks

Pia-Ramona WojtinnekPia-Ramona Wojtinnek,  Brian HarringtonBrian Harrington,  Sebastian RudolphSebastian Rudolph,  Stephen PulmanStephen Pulman
Pia-Ramona Wojtinnek, Brian Harrington, Sebastian Rudolph, Stephen Pulman
Conceptual Knowledge Acquisition Using Automatically Generated Large-Scale Semantic Networks
In Madalina Croitoru, Sébastien Ferré, Dickson Lukose, eds., Proceedings of the 18th International Conference on Conceptual Structures, volume 6208 of LNCS, 203-206, July 2010. Springer
  • KurzfassungAbstract
    We present a method for automatically creating large-scale semantic networks from natural language text, based on deep semantic analysis. We provide a robust and scalable implementation, and sketch various ways in which the representation may be deployed for conceptual knowledge acquisition. A translation to RDF establishes interoperability with a wide range of standardised tools, and bridges the gap to the field of semantic technologies.
  • Forschungsgruppe:Research Group: Computational LogicComputational Logic
The final publication is available at Springer.
@inproceedings{WHRP2010,
  author    = {Pia-Ramona Wojtinnek and Brian Harrington and Sebastian Rudolph
               and Stephen Pulman},
  title     = {Conceptual Knowledge Acquisition Using Automatically Generated
               Large-Scale Semantic Networks},
  editor    = {Madalina Croitoru and S{\'{e}}bastien Ferr{\'{e}} and Dickson
               Lukose},
  booktitle = {Proceedings of the 18th International Conference on Conceptual
               Structures},
  series    = {LNCS},
  volume    = {6208},
  publisher = {Springer},
  year      = {2010},
  month     = {July},
  pages     = {203-206}
}