Sequentiality of Group-Weighted Tree Automata

Aus International Center for Computational Logic
Wechseln zu:Navigation, Suche

Toggle side column

Sequentiality of Group-Weighted Tree Automata

Frederic DörbandFrederic Dörband,  Thomas FellerThomas Feller,  Kevin StierKevin Stier
Frederic Dörband, Thomas Feller, Kevin Stier
Sequentiality of Group-Weighted Tree Automata
In Alberto Leporati, Carlos Martín-Vide, Dana Shapira, Claudio Zandron, eds., Language and Automata Theory and Applications. LATA 2021., volume 12638 of Lecture Notes in Computer Science, 267-278, February 2021. Springer
  • KurzfassungAbstract
    We introduce the notion of group-weighted tree automata over commutative groups and characterise sequentialisability of such automata. In particular, we introduce a fitting notion for tree distance and prove the equivalence between sequentialisability, the so-called Lipschitz property, and the so-called twinning property.
  • Projekt:Project: DeciGUTQuantLA
  • Forschungsgruppe:Research Group: Computational LogicComputational Logic
The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-030-68195-1_21.
@inproceedings{DFS2021,
  author    = {Frederic D{\"{o}}rband and Thomas Feller and Kevin Stier},
  title     = {Sequentiality of Group-Weighted Tree Automata},
  editor    = {Alberto Leporati and Carlos Mart{\'{\i}}n-Vide and Dana Shapira
               and Claudio Zandron},
  booktitle = {Language and Automata Theory and Applications. {LATA} 2021.},
  series    = {Lecture Notes in Computer Science},
  volume    = {12638},
  publisher = {Springer},
  year      = {2021},
  month     = {February},
  pages     = {267-278},
  doi       = {10.1007/978-3-030-68195-1_21}
}