Sarah Alice Gaggl

From International Center for Computational Logic

Dr. Sarah Alice Gaggl

Group LeaderTechnische Universität DresdenInternational Center for Computational Logic Logic Programming and Argumentation

Since October 2020 I am the leader of the research group Logic Programming and Argumentation at the Institute of Artificial Intelligence, TU-Dresden. Also since October 2020 I am the project leader of BMBF funded project NAVAS - Navigation Approaches for Answer Sets. From 2019 till 2022 I was a principal investigator in the Transregional Collaborative Research Centre 248 Center for Perspicuous Computing (CPEC) which aims at enabling comprehension in a cyber-physical world with the human in the loop. From April 2013 till September 2020 I was a postdoctoral research assistant at the Computational Logic Group at the TU-Dresden.

My research interests are in (but not limmited to)

Before joining the TU Dresden I received my PhD in Computer Science in 2013 at the Vienna University of Technology. From 2009 to 2012 I was working as a project research assistant in the Database and Artificial Intelligence Group at the WWTF project New Methods for Analyzing, Comparing, and Solving Argumentation Problems under the supervision of Stefan Woltran.

For further information have a look at my CV.

Newest Publications

View full publication list

Elisa Böhl, Stefan Ellmauthaler, Sarah Alice Gaggl
Winning Snake: Design Choices in Multi-Shot ASP
Technical Report, arXiv.org, volume arXiv:2408.08150, August 2024. To appear in Theory and Practice of Logic Programming (TPLP), Proceedings of ICLP 2024
Details Download
Dominik Rusovac, Markus Hecher, Martin Gebser, Sarah Alice Gaggl, Johannes K. Fichte
Navigating and Querying Answer Sets: How Hard Is It Really and Why?
Proceedings of the 21st International Conference on Principles of Knowledge Representation and Reasoning (KR 2024), to appear
Details
Elisa Böhl, Stefan Ellmauthaler, Sarah Alice Gaggl
Winning Snake: Design Choices in Multi-Shot ASP
Proceedings of the 40th International Conference on Logic Programming (ICLP 2024), to appear
Details Download
Johannes Klaus Fichte, Sarah Alice Gaggl, Markus Hecher, Dominik Rusovac
IASCAR: Incremental Answer Set Counting by Anytime Refinement
Theory and Practice of Logic Programming, 1-28, February 2024
Details Download
Enrico Pontelli, Stefania Costantini, Carmine Dodaro, Sarah Alice Gaggl, Roberta Calegari, Artur D'Avila Garcez, Francesco Fabiano, Alessandra Russo, Francesca Toni
Proceedings 39th International Conference on Logic Programming
Volume 385, September 2023. Open Publishing Association
Details
Elisa Böhl, Sarah Alice Gaggl, Dominik Rusovac
Representative Answer Sets: Collecting Something of Everything
In Kobi Gal, Ann Nowé, Grzegorz J. Nalepa, Roy Fairstein, Roxana Radulescu, eds., Proceedings of the 26th European Conference on Artificial Intelligence (ECAI 2023), 271--278, September 2023. IOS Press
Details Download
Johannes Klaus Fichte, Sarah Alice Gaggl, Markus Hecher, Dominik Rusovac
IASCAR: Incremental Answer Set Counting by Anytime Refinement
Technical Report, arXiv.org, volume arXiv:2311.07233, November 2023. Under consideration in Theory and Practice of Logic Programming (TPLP)
Details Download
Martin Diller, Sarah Alice Gaggl, Piotr Gorczyca
flexABle – System Description for ICCMA 2023
System description for ICCMA 2023, 2023
Details Download
Sarah Alice Gaggl, Maria Vanina Martinez, Magdalena Ortiz
Logics in Artificial Intelligence - 18th European Conference, JELIA 2023, Dresden, Germany, September 20-22, 2023, Proceedings
Volume 14281 of Lecture Notes in Computer Science, September 2023. Springer
Details
Raimund Dachselt, Sarah Alice Gaggl, Markus Krötzsch, Julián Méndez, Dominik Rusovac, Mei Yang
NEXAS: A Visual Tool for Navigating and Exploring Argumentation Solution Spaces
In Francesca Toni, eds., Proceedings of the 9th International Conference on Computational Models of Argument (COMMA 2022), volume 220146 of FAIA, 116-127, September 2022. IOS Press
Details Download
View full publication list

Courses



Completed Theses

NAVAS-logo.png

NAVAS
Navigation Approaches for Answer Sets