Problem Solving and Search in Artificial Intelligence

Aus International Center for Computational Logic
Wechseln zu:Navigation, Suche

Problem Solving and Search in Artificial Intelligence

Lehrveranstaltung mit SWS 2/1/2 (Vorlesung/Übung/Praktikum) in WS 2019

Dozent

Tutor

Umfang (SWS)

  • 2/1/2

Module

Leistungskontrolle

  • Mündliche Prüfung



Problem solving and search is a central topic in Artificial Intelligence. This course presents several techniques to solve in general difficult problems.

The course covers the following topics:

  • Basic Concepts
  • Uninformed vs Informed Search
  • Local Search, Stochastic Hill Climbing, Simulated Annealing
  • Tabu Search
  • Answer Set Programming
  • Constraint Satisfaction
  • Evolutionary Algorithms, Genetic Algorithms
  • Structural Decomposition Techniques (Tree/Hypertree Decompositions)


Learning Outcomes

  • The students should identify why typical AI problems are difficult to solve
  • The students will analyze different algorithms and methods for AI problems and identify when their application is appropriate
  • The connections between the (graph) structure and the complexity of a problem should become clear, as well as which methods can be used to tackle the problem
  • In the practical part, the students will analyze a given problem and develop a solution for it.

Prerequisites

Basic knowledge of theoretical computer science and Logic.

Organisation

The goals can be acquierd by studying the lecture material, solving the exercises of the tutorials and developing an implementation for a practical problem.

The practical work should be performed in groups of two students throughout the semester with regular updates on the progress.

The lecture will be on Tuesday DS1 and the tutorials and practical sessions on Thursday DS1. Please check the concrete schedule for changes.

The course is full, no furhter registrations will be accepted.
  • Stuart J. Russell and Peter Norvig. "Artificial Intelligence A Modern Approach" (3. edition ). Pearson Education, 2010.
  • Zbigniew Michalewicz and David B. Fogel. "How to Solve It: Modern Heuristics", volume 2. Springer, 2004.
  • Martin Gebser, Benjamin Kaufmann Roland Kaminski, and Torsten Schaub. "Answer Set Solving in Practice". Synthesis Lectures on Artificial Intelligence and Machine Learning. Morgan and Claypool Publishers, 2012.
  • Michael Gelfond and Vladimir Lifschitz. "Classical negation in logic programs and disjunctive databases". New Generation Comput., 9(3–4):365–386, 1991.
  • A.E. Eiben and J.E. Smith. "Introduction to Evolutionary Computing", Springer, 2003.
  • Thomas Hammerl, Nysret Musliu and Werner Schafhauser. "Metaheuristic Algorithms and Tree Decomposition", Handbook of Computational Intelligence, pp 1255–1270, Springer, 2015.
  • Hans L. Bodlaender, Arie M.C.A. Koster. "Treewidth computations I. Upper bounds", Comput. 208(2): 259–275, 2010.
  • Georg Gottlob, Nicola Leone, and Francesco Scarcello. "Hypertree decompositions and tractable queries", Journal of Computer and System Sciences, 64(3):579–627, 2002. ISSN 0022-0000.
  • Artan Dermaku, Tobias Ganzow, Georg Gottlob, Ben McMahan, Nysret Musliu, and Marko Samer. "Heuristic methods for hypertree decomposition", In Alexander Gelbukh and Eduardo F. Morales, editors, MICAI 2008: Advances in Artificial Intelligence, volume 5317 of LNCS, pages 1–11. Springer Berlin Heidelberg, 2008. ISBN 978-3-540-88635-8.

Veranstaltungskalender abonnieren (icalendar)

Vorlesung Introduction DS1, 15. Oktober 2019 in APB E005 Datei
Vorlesung Informed vs. Uninformed Search DS1, 22. Oktober 2019 in APB E005 Datei
Praktikum Practical Work Topic DS1, 24. Oktober 2019 in APB E005 Datei
Vorlesung Local Search DS1, 29. Oktober 2019 in APB E005 Datei
Übung Tutorial 1 (Local Search) DS1, 7. November 2019 in APB E005 Datei
Vorlesung Tabu Search DS1, 12. November 2019 in APB E005 Datei
Vorlesung ASP 1 DS1, 14. November 2019 in APB E005 Datei
Übung Tutorial 2 (Tabu Search) DS1, 19. November 2019 in APB E005 Datei
Übung Tutorial 3 (ASP 1) DS1, 21. November 2019 in APB E005
Vorlesung ASP 2 DS1, 26. November 2019 in APB E005 Datei
Praktikum Practical Work Discussion DS1, 28. November 2019 in APB E005
Vorlesung ASP 3 DS1, 3. Dezember 2019 in APB E005
Übung Tutorial 4 (ASP 2) DS1, 5. Dezember 2019 in APB E005 Datei
Vorlesung CSP DS1, 10. Dezember 2019 in APB E005 Datei
Vorlesung Evolutionary Algorithms DS1, 17. Dezember 2019 in APB E005 Datei
Übung Tutorial 5 (CSP) DS1, 19. Dezember 2019 in APB E005 Datei
Vorlesung Structural Decompositions 1 DS1, 7. Januar 2020 in APB E005 Datei
Vorlesung Structural Decompositions 2 DS1, 14. Januar 2020 in APB E005 Datei
Übung Tutorial 6 (Structural Decompositions) DS1, 16. Januar 2020 in APB E005 Datei
Praktikum Practical Work Presentations DS1, 21. Januar 2020 in APB E005
Praktikum Practical Work Presentations DS1, 23. Januar 2020 in APB E005
Vorlesung Q&A DS1, 4. Februar 2020 in APB E005


Kalender